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than expected from CMB measures
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Excess ~few nW m−2 sr−1

Unresolved 
high-z component?

The CIB excess

● High early COBE+IRTS measures, 
later reduced by CIBER+Spitzer

● Dependent on foreground removal             
                               (e.g. zodiacal light)

● Further constraints from Euclid

Emission accumulated over the entire history of our Universe

Resolved galaxiesResolved galaxies 
out to z ~7 - 8

CIB measuresCIB measures 
averaged over large sky areas

z ~ 15 - 40z ~ 15 - 40

z ~ 7 - 15z ~ 7 - 15

Kashlinsky et al. (2018)Kashlinsky et al. (2018)



  

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem



  

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem



  

Two birds with one stone?

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem



  

Two birds with one stone?

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem

ffescesc  0≃  0≃



  

Two birds with one stone?
[CASE 1] “CIB overshoot”: CIB high-z LAEs > CIB excess

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem

ffescesc  0≃  0≃



  

Two birds with one stone?
[CASE 1] “CIB overshoot”: CIB high-z LAEs > CIB excess

   Joint constraint on escape fractions from reionization and CIB excess

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem

max. fesc to not reionize the Universe too early min. fesc to not over-produce local CIB

ffescesc  0≃  0≃



  

Two birds with one stone?
[CASE 1] “CIB overshoot”: CIB high-z LAEs > CIB excess

   Joint constraint on escape fractions from reionization and CIB excess

[CASE 2] “CIB undershoot”: CIB excess even beyond JWST galaxies

Ionizing radiation from 
sources at sources at 7  z  15≲ ≲7  z  15≲ ≲

Redshifted into local 
CIB at λ  1 - 2 μm≃CIB at λ  1 - 2 μm≃

Absorbed by ISM and 
re-emitted into LyLyɑɑ

Early reionization problemEarly reionization problem

CIB excess problemCIB excess problem

max. fesc to not reionize the Universe too early min. fesc to not over-produce local CIB

ffescesc  0≃  0≃



  

Two birds with one stone?
[CASE 1] “CIB overshoot”: CIB high-z LAEs > CIB excess

   Joint constraint on escape fractions from reionization and CIB excess

[CASE 2] “CIB undershoot”: CIB excess even beyond JWST galaxies
   We can throw the excess ionizing photons into Lyα, no tension with CIB measures
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max. fesc to not reionize the Universe too early min. fesc to not over-produce local CIB
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 + Other mechanisms needed to account for the CIB excess
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What about the rest of the IR photons?

Harikane et al. 2023Harikane et al. 2023

Top-heavy IMF?

● Underestimated contribution from high-z, JWST galaxies?
● Additional contributions? Missed sources, especially 

during the EoR
E.g. ΦUV → ΦUV + Φ*

UV
… maybe Pop IIIsPop IIIs??

(Santos et al. 2002)(Santos et al. 2002)
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Pop III UVLF: beyond mini-halos?
● strong Hɑ
● Balmer jump
● no dust
● undetectable metal lines

Fujimoto et al. (2025), arXiv:2501.11678Fujimoto et al. (2025), arXiv:2501.11678

Promising Pop III candidate GLIMPSE-16043GLIMPSE-16043:

GLIMPSE + UNCOVER + CEERS + PRIMER GLIMPSE + UNCOVER + CEERS + PRIMER + JOF+ JOF
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● Blue high-z, JWST galaxies may produce an overly anticipated reionization than allowed by Planck CMB data

● This tension could be solved with lower escape fractions than measured at low z, with most ionizing photons 
re-emitted into Lyɑ and eventually redshifted into the local CIB (  0.03 nW m≲ −2 sr−1) 

● However, measured CIB excess even beyond resolved low-z + high-z JWST galaxies 
                                               Other sources? (e.g. late Pop III star formation)

Munoz et al. (2024)Munoz et al. (2024)

Venditti et al. (2023, 2024a,b), Venditti et al. (2023, 2024a,b), 
Fujimoto et al. (2025)Fujimoto et al. (2025)

Kashlinsky et al. (2018)Kashlinsky et al. (2018)
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