

CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

Bayesian Component Separation for DESI LAE Automated Spectroscopic Redshifts and Photometric Targeting

arXiv:2504.06870

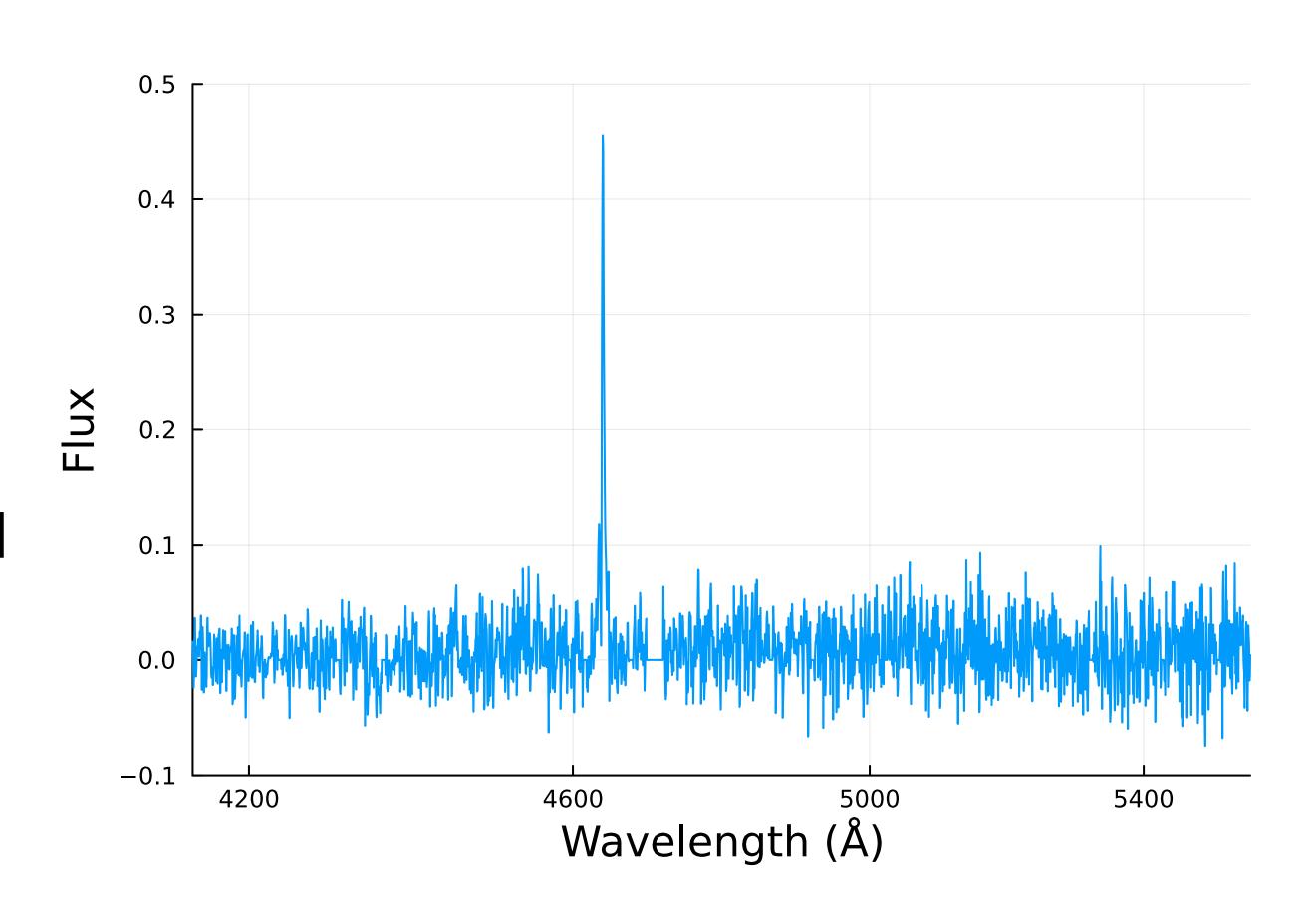
Ana Sofía M. Uzsoy

with Andrew Saydjari, Arjun Dey, Anand Raichoor, Douglas Finkbeiner, and others

Escape of Lyman Radiation from Galactic Labyrinths, OAC, Crete April 11, 2025

Motivation

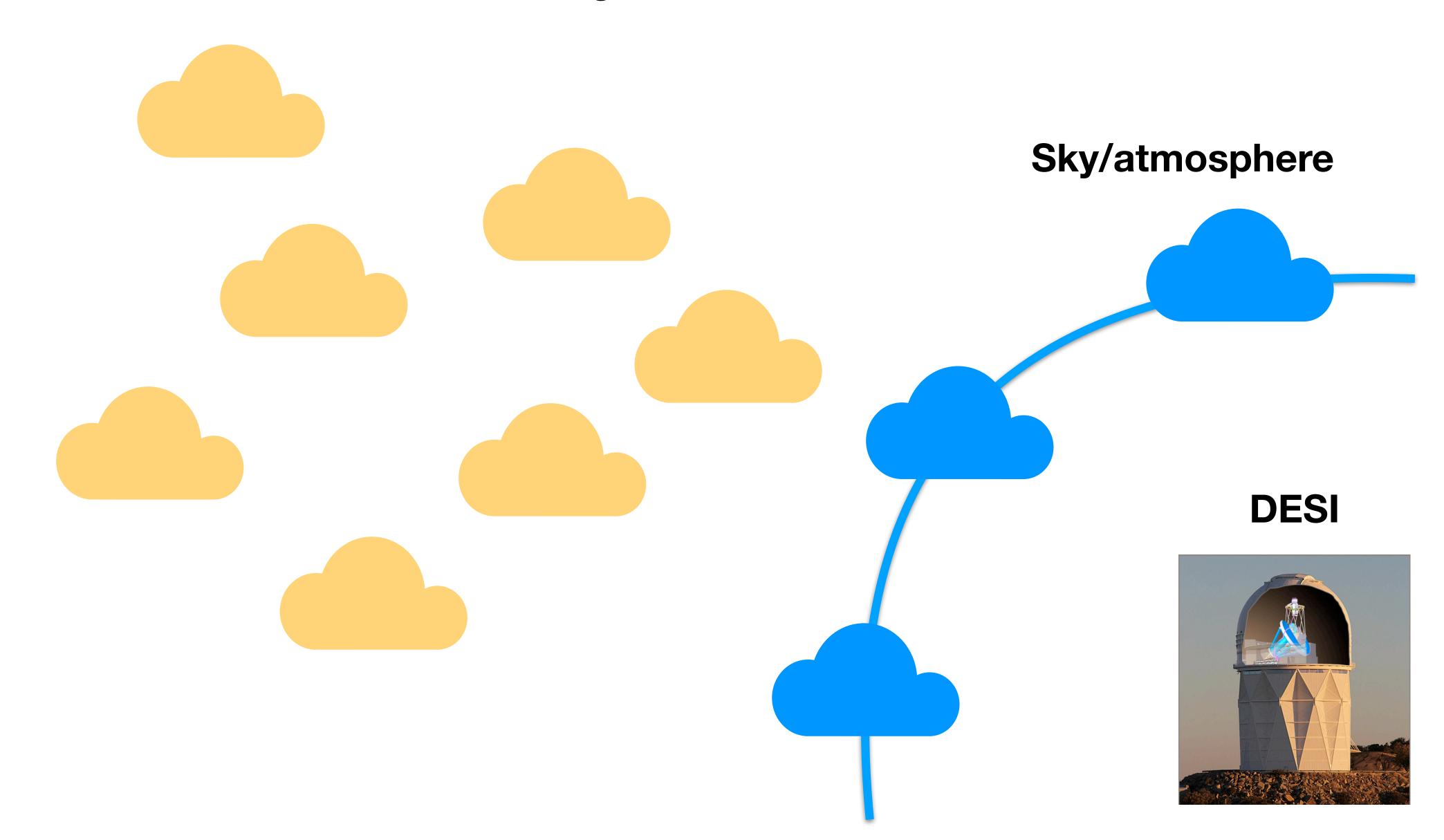
- DESI (Dark Energy Spectroscopic Instrument) collects millions of galaxy spectra
- DESI-2: focus on high-redshift targets (aims to observe ~1.5 million LAEs)
- We want to optimize LAE selection and analysis for future surveys like DESI-2
- DESI pipeline currently does not automatically determine redshifts for LAEs



DESI

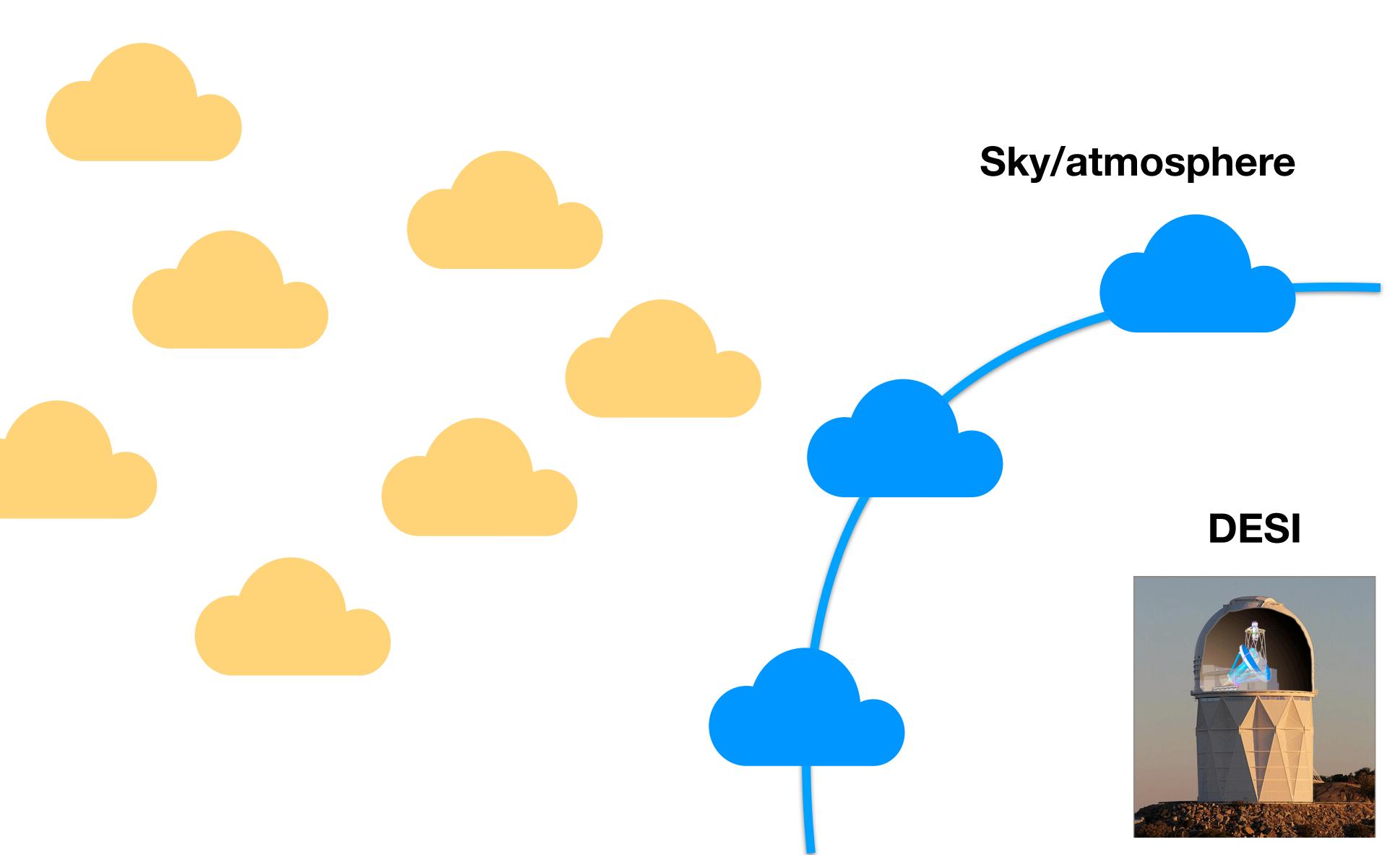
Sky/atmosphere **DESI**

Interstellar & Intergalactic medium

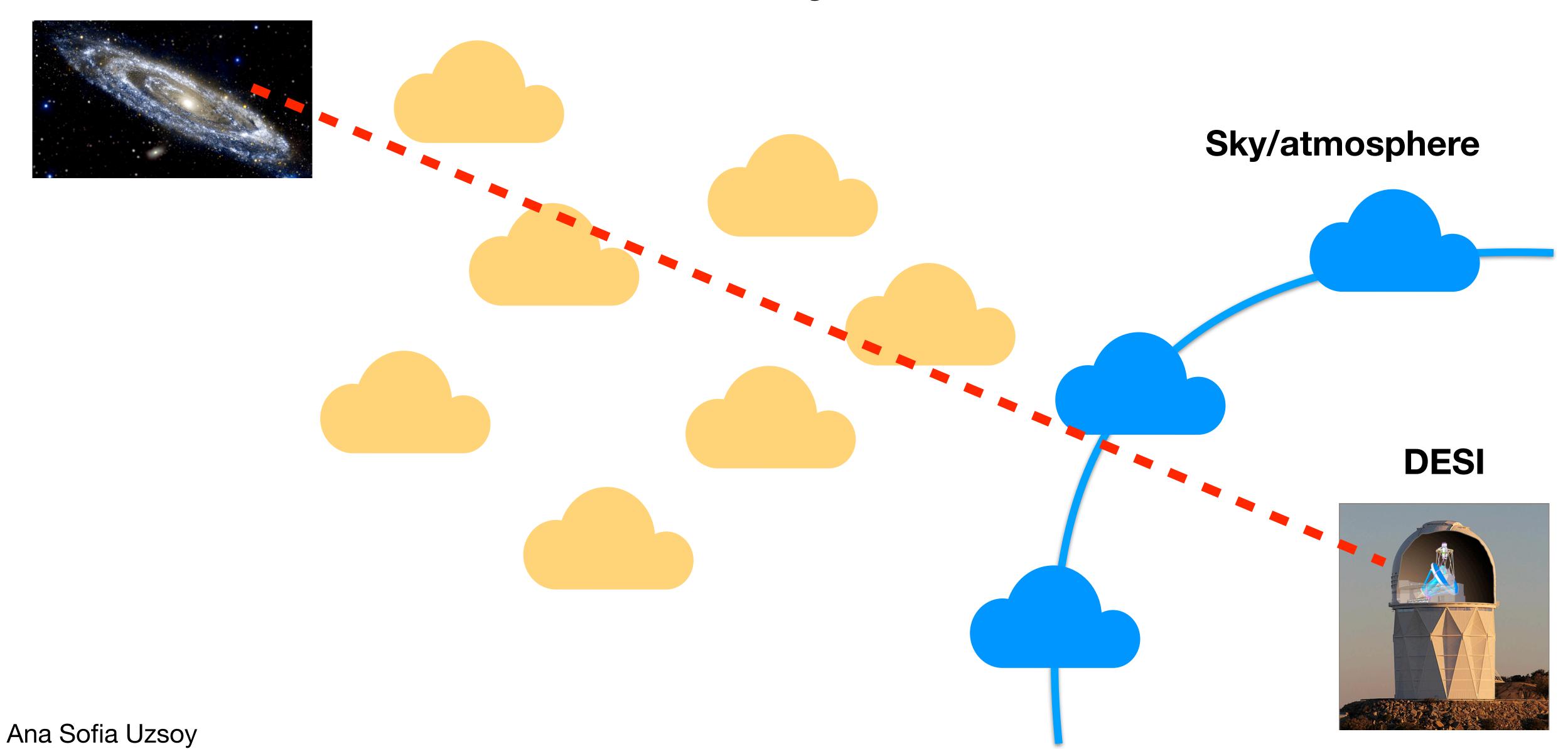


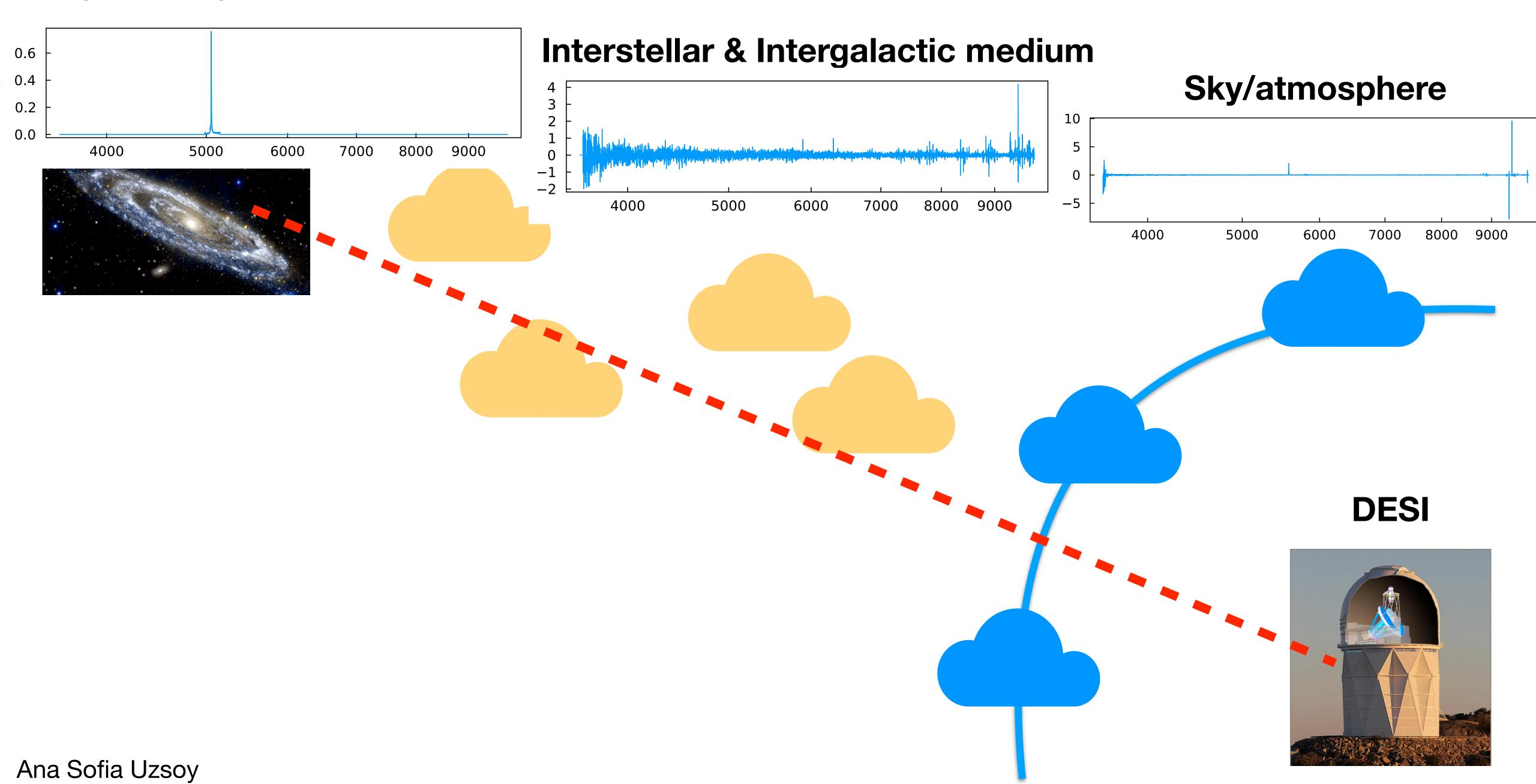
Interstellar & Intergalactic medium

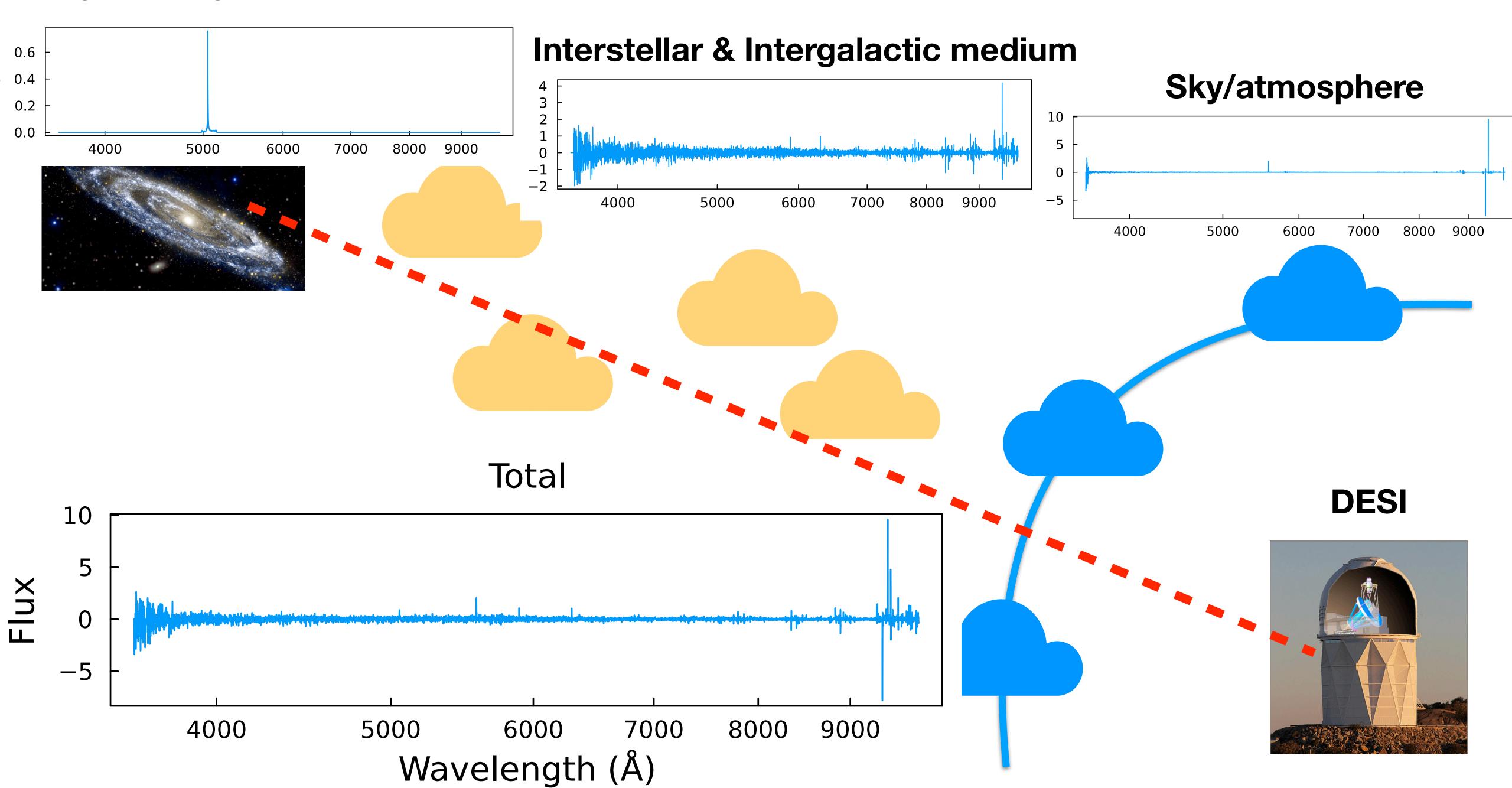




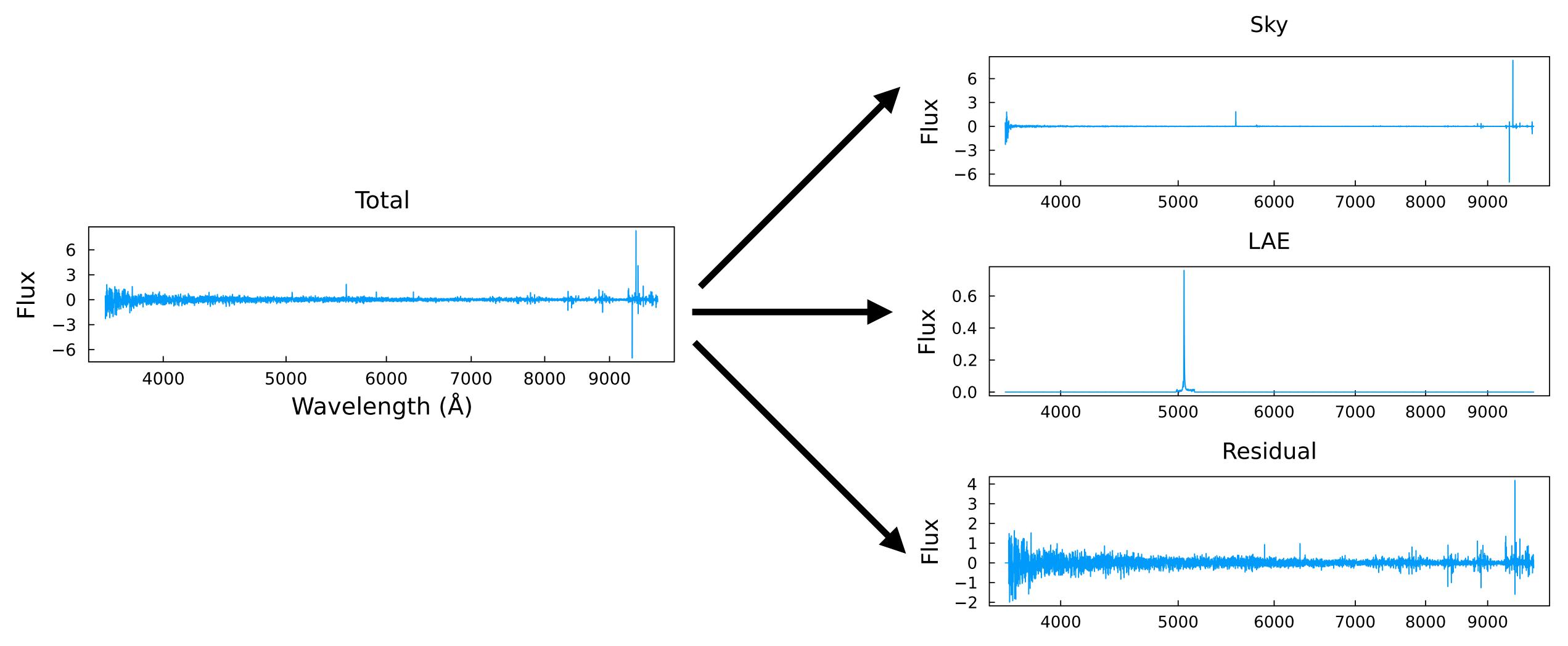
Interstellar & Intergalactic medium



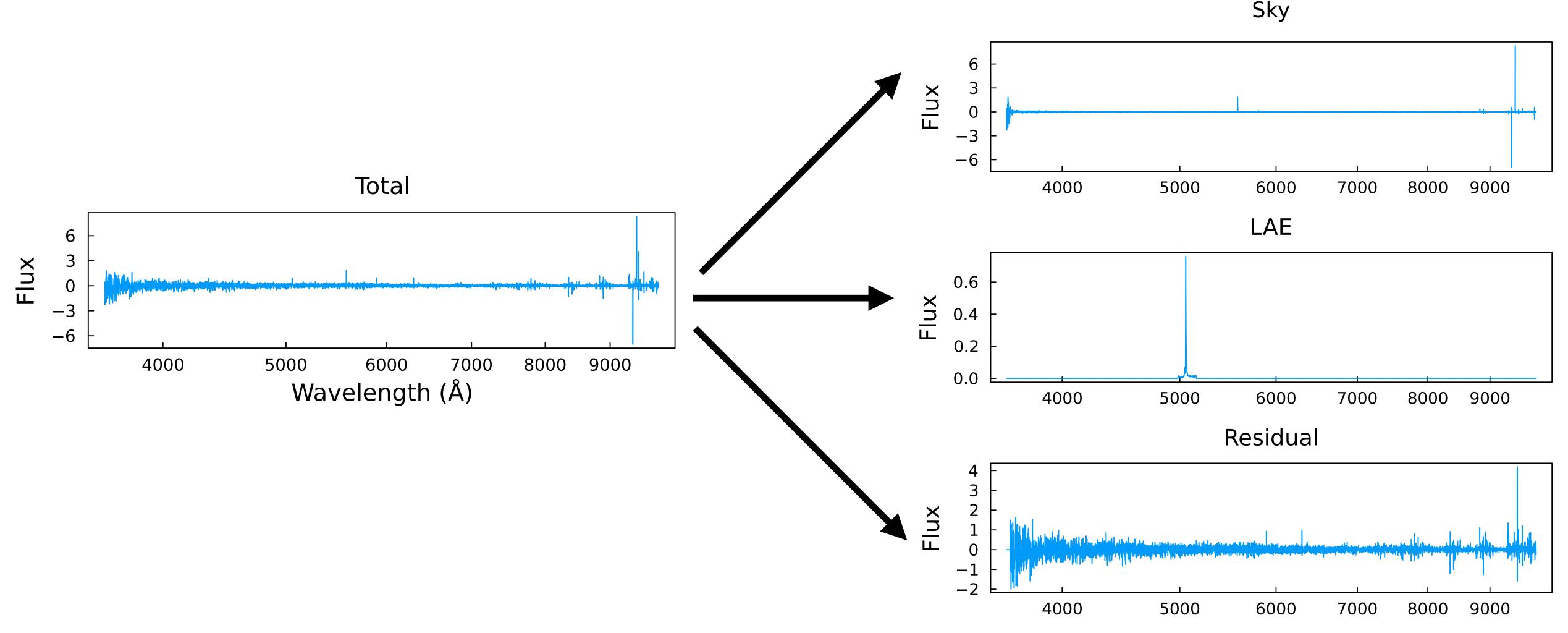




How can we separate a spectrum into its components?



How can we separate a spectrum into its components? How can we automatically determine the redshift of LAEs?



MADGICS:

Marginalized Analytic Dataspace Gaussian Inference for Component Separation

Bayesian component separation technique

MADGICS Formalism

Known # of components k

Prior for each component i as covariance matrix C_i

$$\sum_{i}^{k} C_{i} = C_{tot}$$

$$D_{i} = C_{i}C_{tot}^{-1}D_{tot}$$

Ana Sofia Uzsoy

We use data-driven covariance matrices to put priors on our components.

- MADGICS assumes that you know what you're looking for
- We use known component data to create priors as covariance matrices
- Data-driven method allows us to effectively express systematics
- Components sum exactly to the data

D = matrix of n data vectors

$$C = \frac{DD^T}{n}$$

$$\sum_{i}^{k} C_{i} = C_{tot}$$

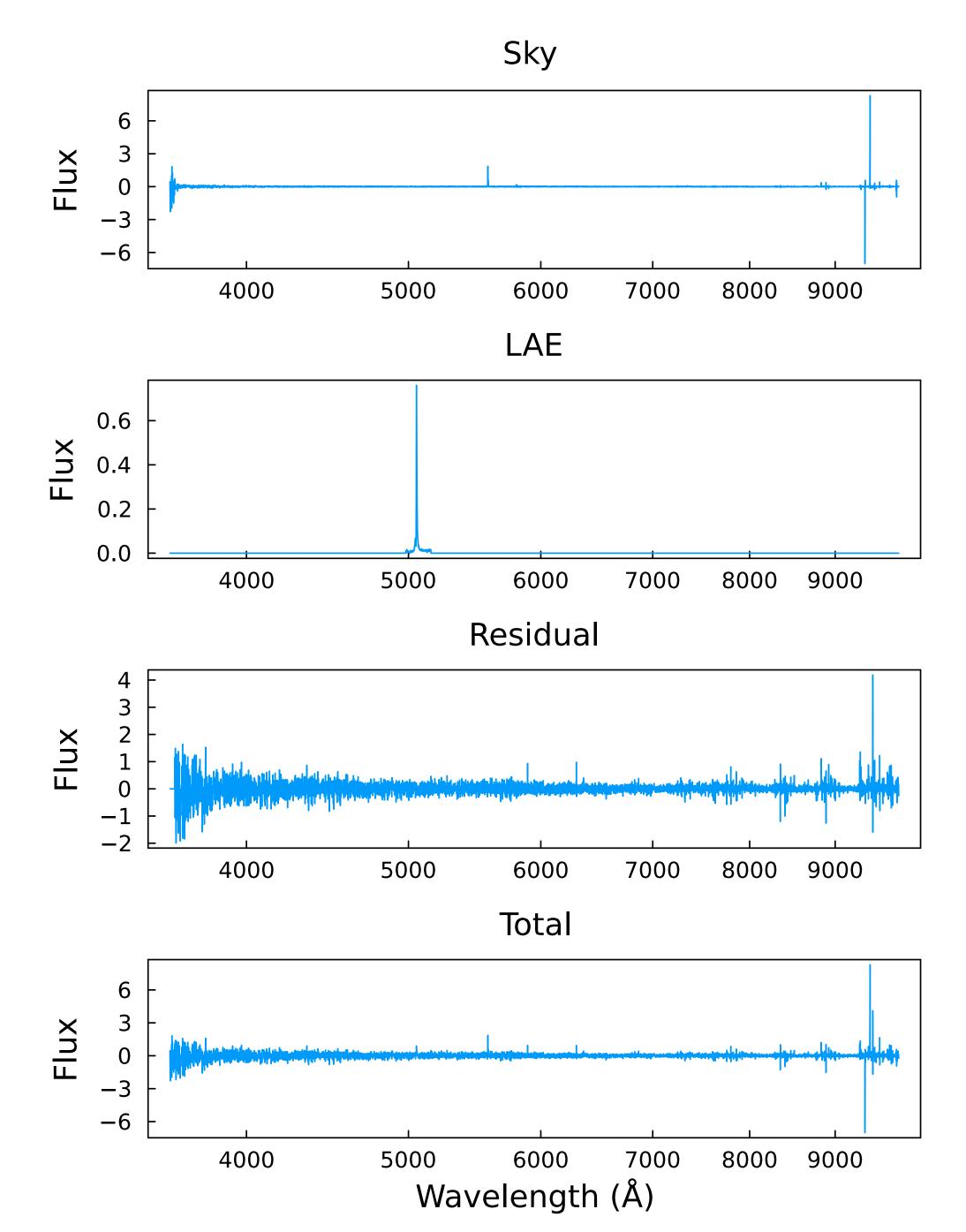
$$D_{i} = C_{i}C_{tot}^{-1}D_{tot}$$

We can model LAE spectra as a sum of components.

spectrum = sky + LAE + residual

Prior covariance matrices:

Wavelength-wavelength covariances!



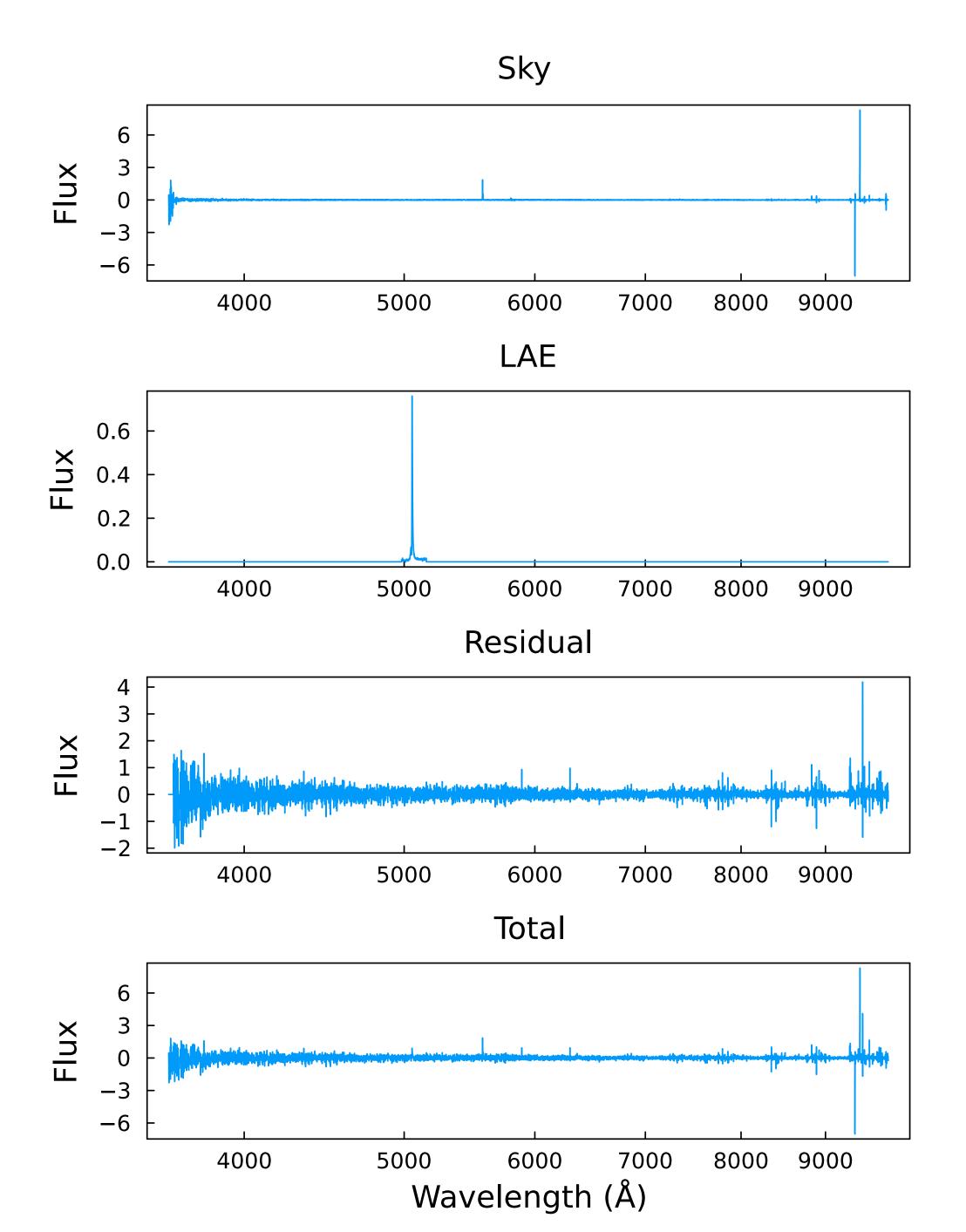
We can model LAE spectra as a sum of components.

$$C_{tot} = C_{sky} + C_{LAE} + C_{res}$$
$$d_{sky} = C_{sky}C_{tot}^{-1}d_{tot}$$

$$d_{LAE} = C_{LAE}C_{tot}^{-1}d_{tot}$$

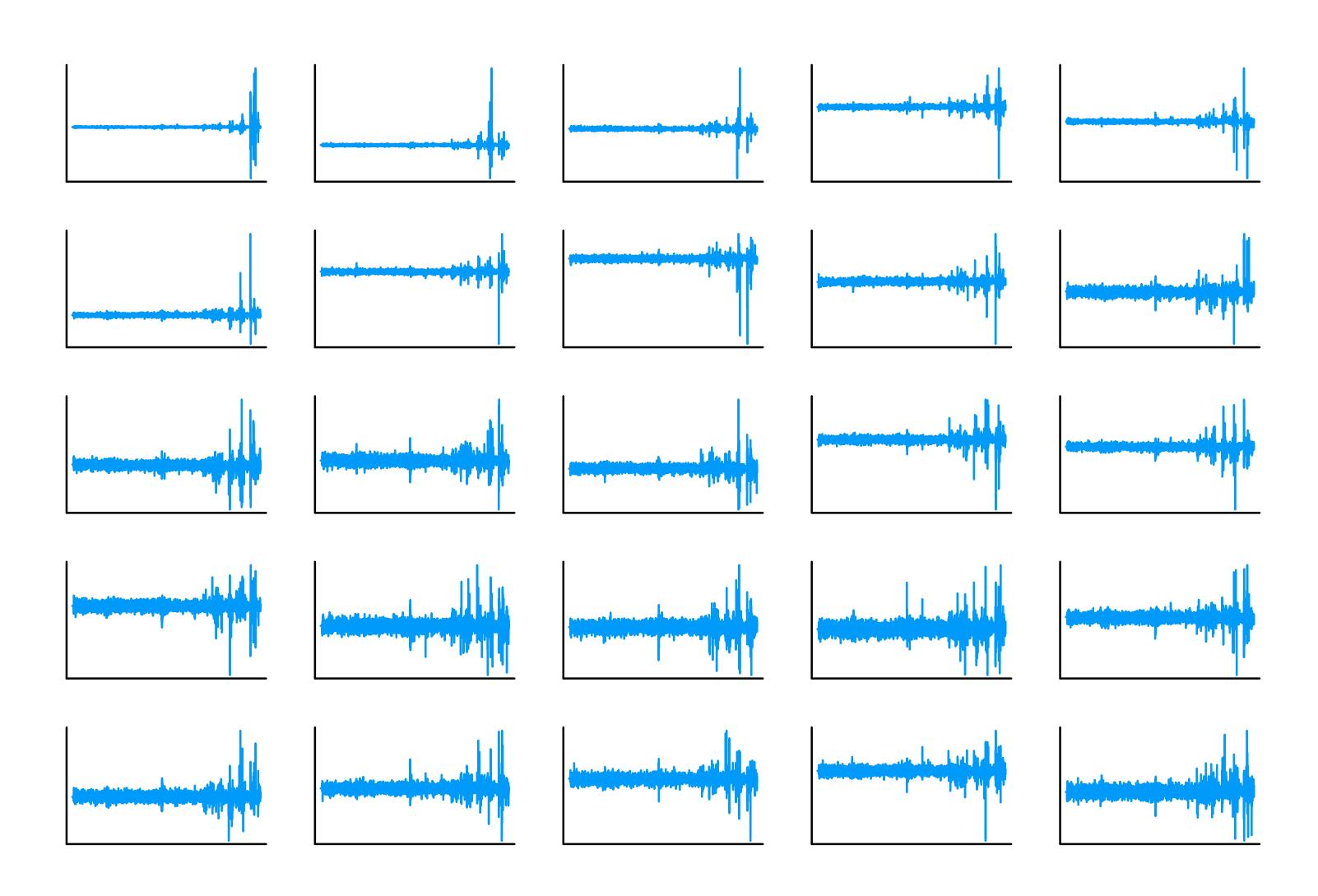
$$d_{res} = C_{res} C_{tot}^{-1} d_{tot}$$

 d_{tot} : total spectrum



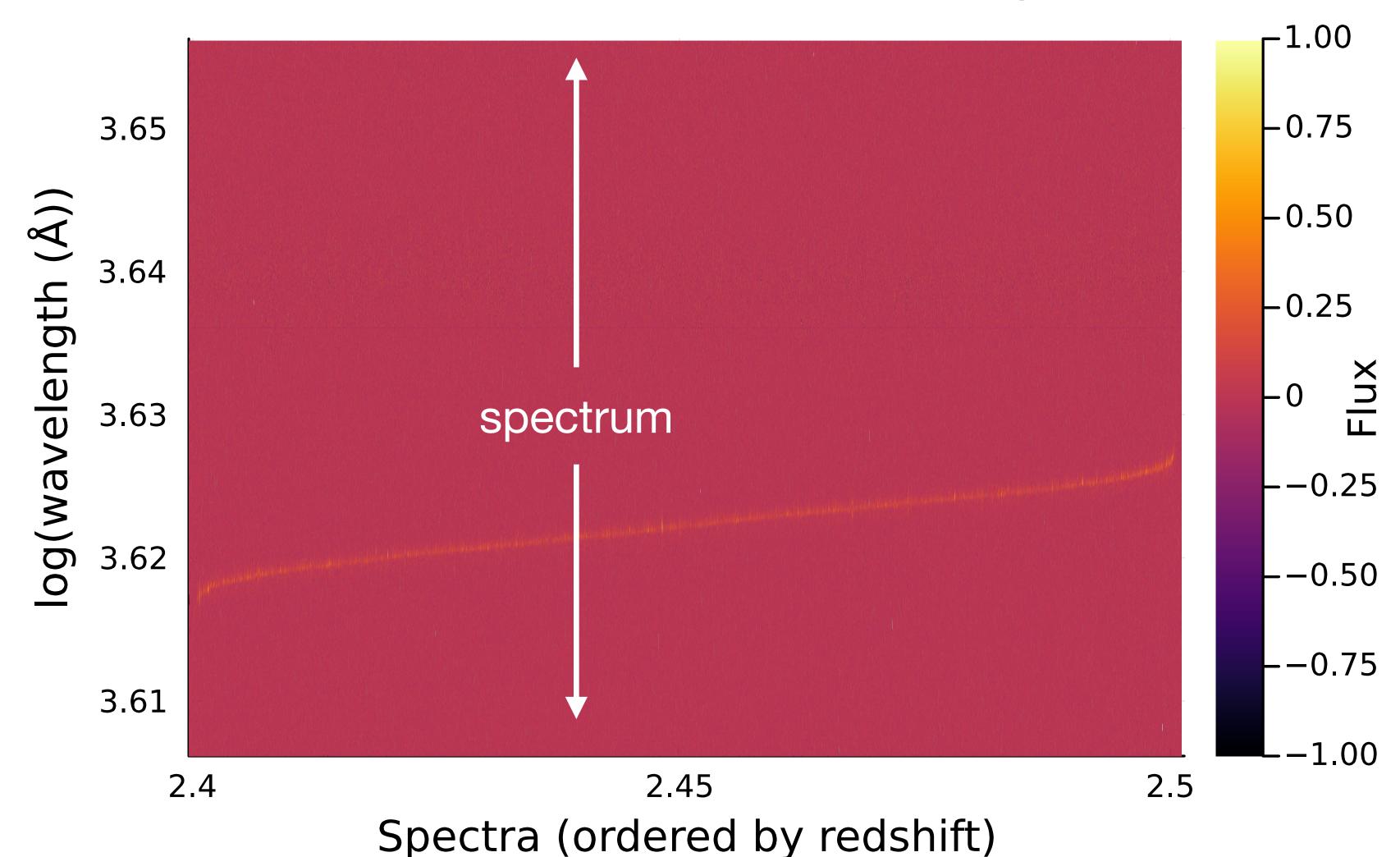
We create a prior covariance matrix of sky spectra.

 C_{sky} : low-rank matrix approximation from top 50 sky eigenvectors



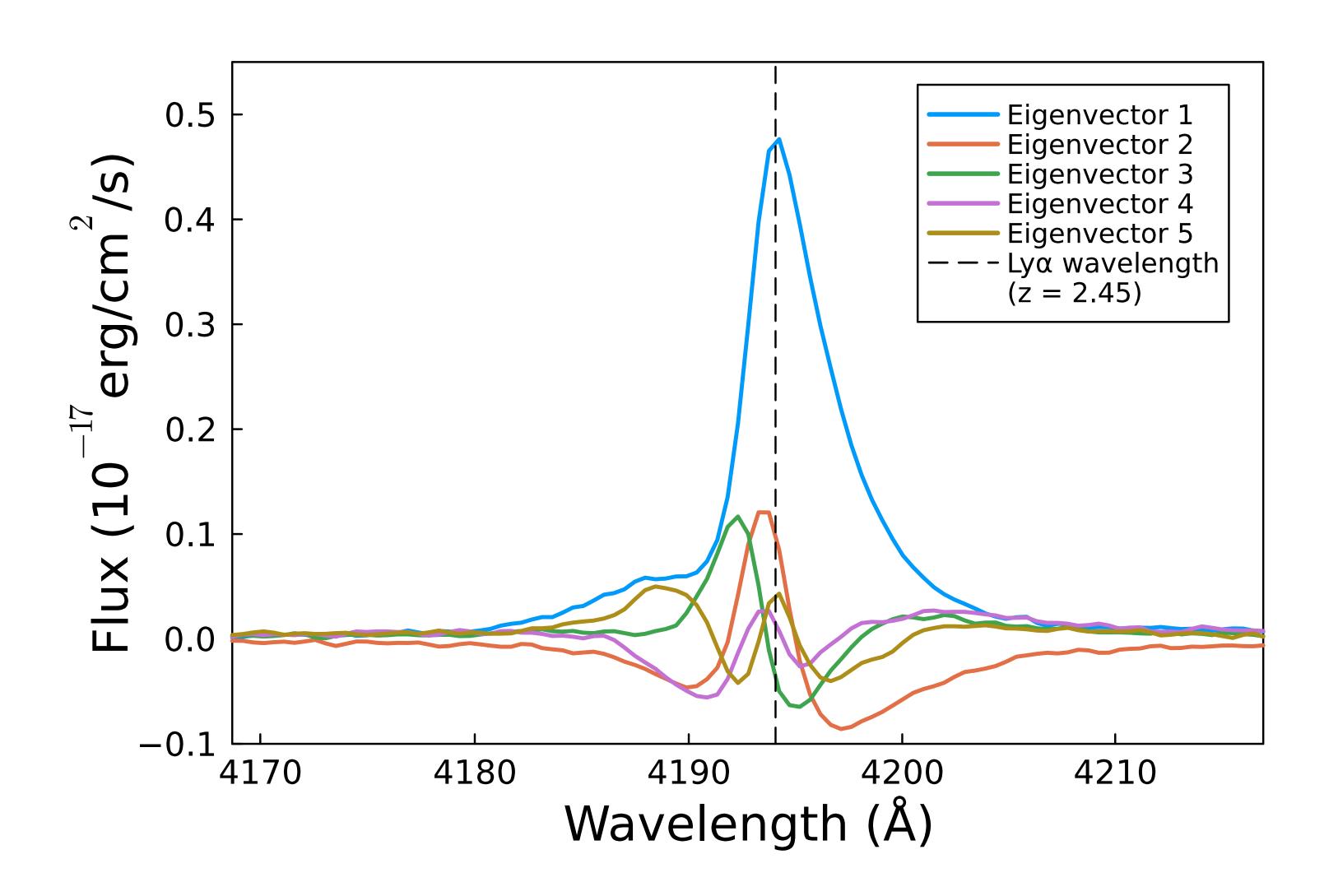
Our LAE prior is made of visually inspected ODIN LAE spectra.

 C_{LAE} : data-driven covariance matrix from ODIN LAE spectra shifted to z=2.45



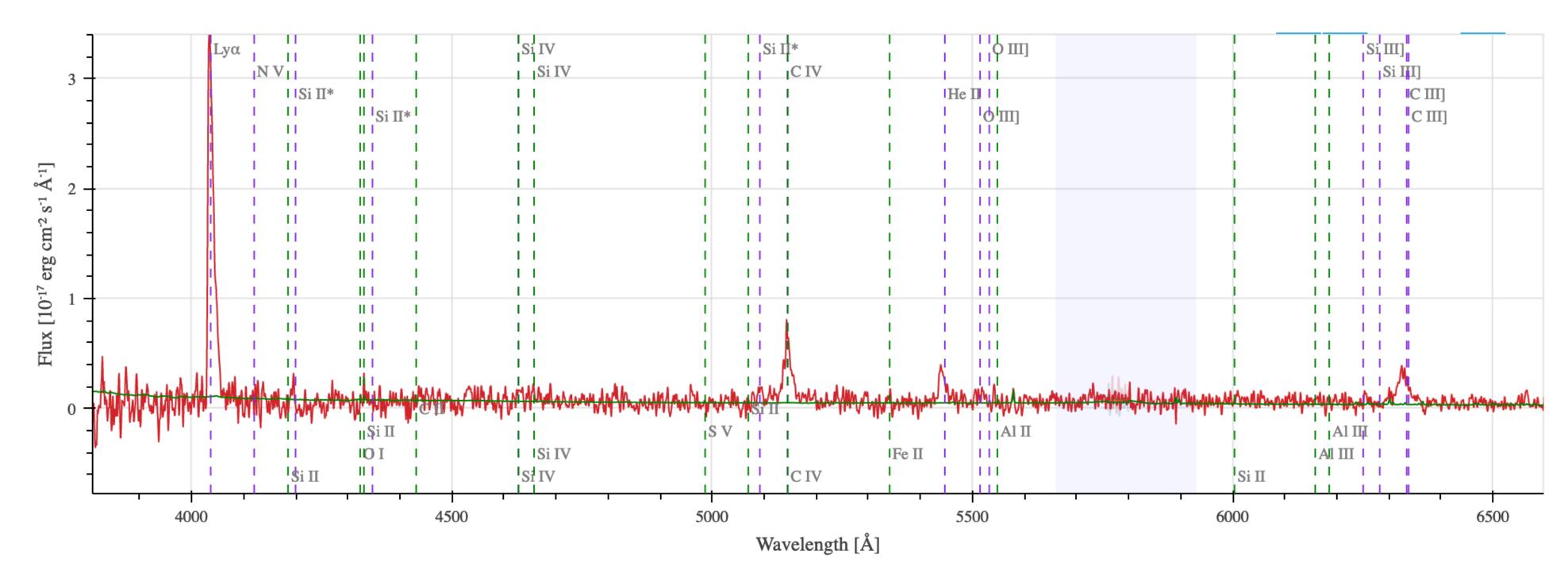
Our LAE prior is made of visually inspected ODIN LAE spectra.

 C_{LAE} : data-driven covariance matrix from ODIN LAE spectra shifted to z=2.45



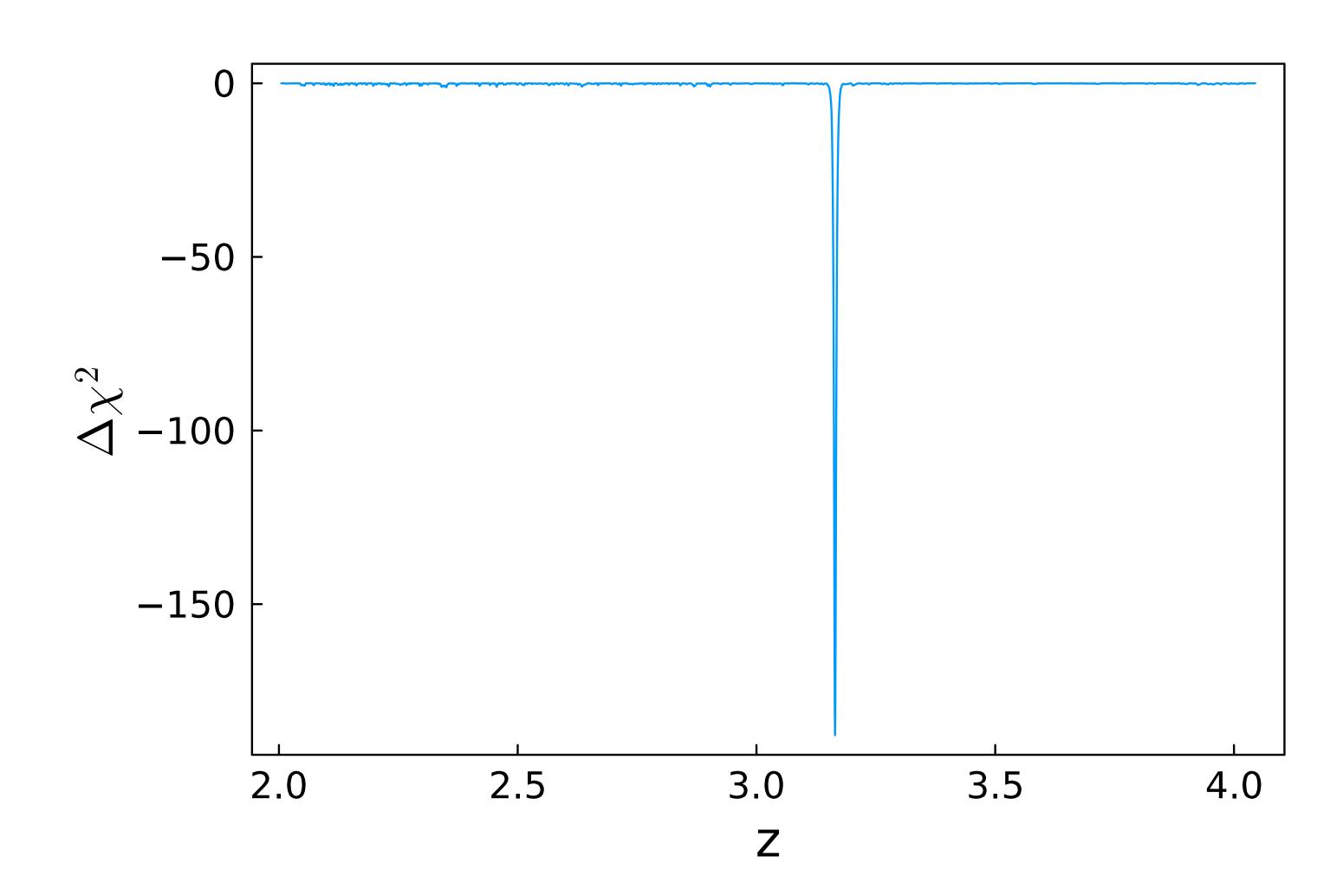
We want to automatically determine spectroscopic redshifts.

- DESI spectra for 910 LAE targets with medium-band photometry at 2 < z < 4
- Visually inspected redshifts for comparison

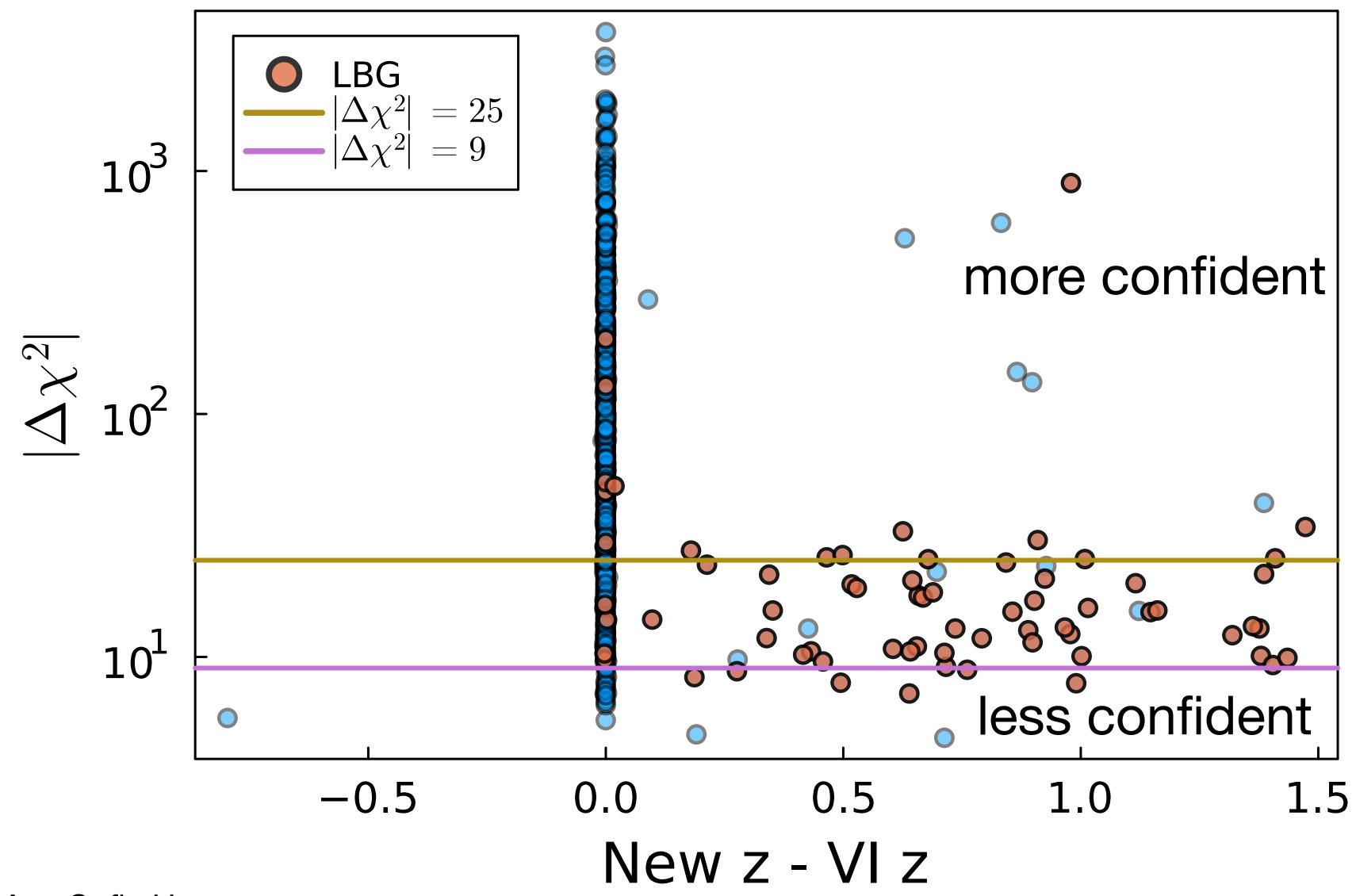


We determine redshift by minimizing $\Delta \chi^2$.

 $\Delta \chi^2(z) = \chi^2(\text{sky} + \text{residual}) - \chi^2(\text{sky} + \text{residual} + \text{LAE}(z))$



Our method is able to accurately determine redshift.

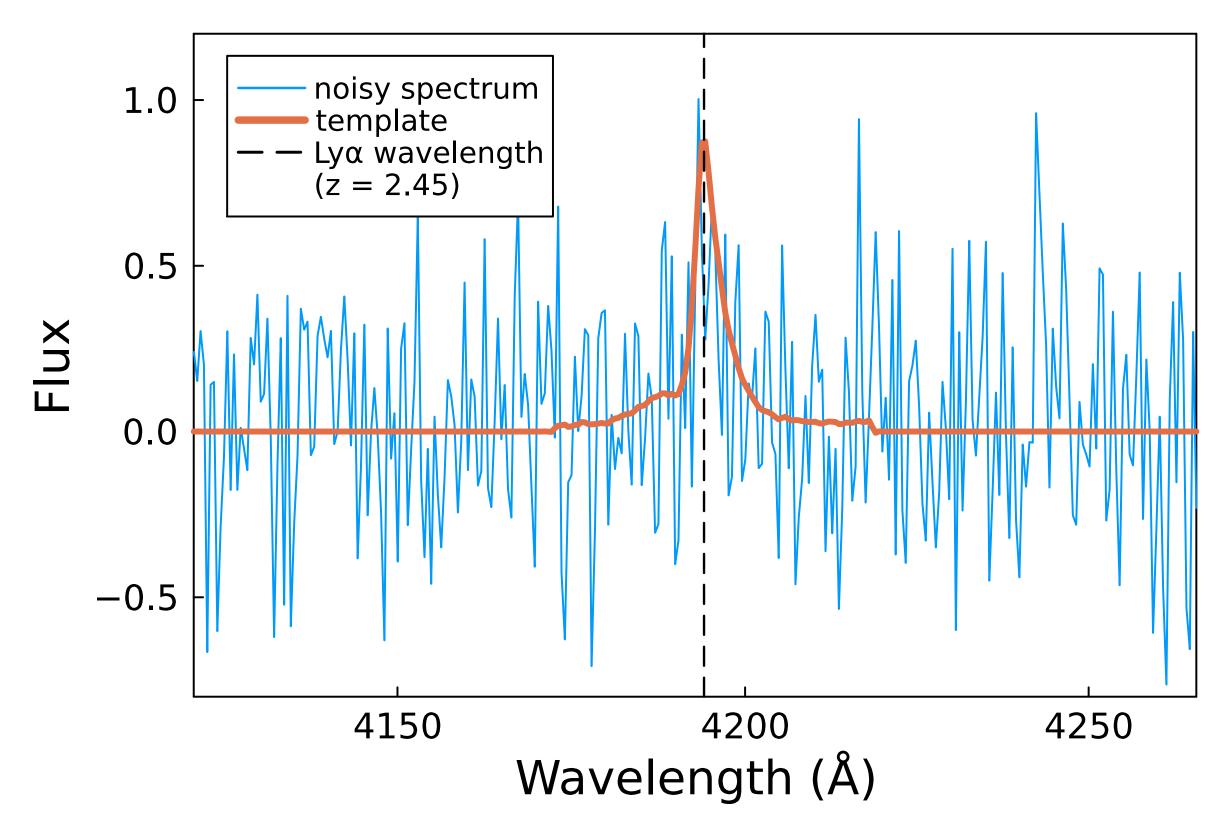


>90% within 0.005 of VI redshift

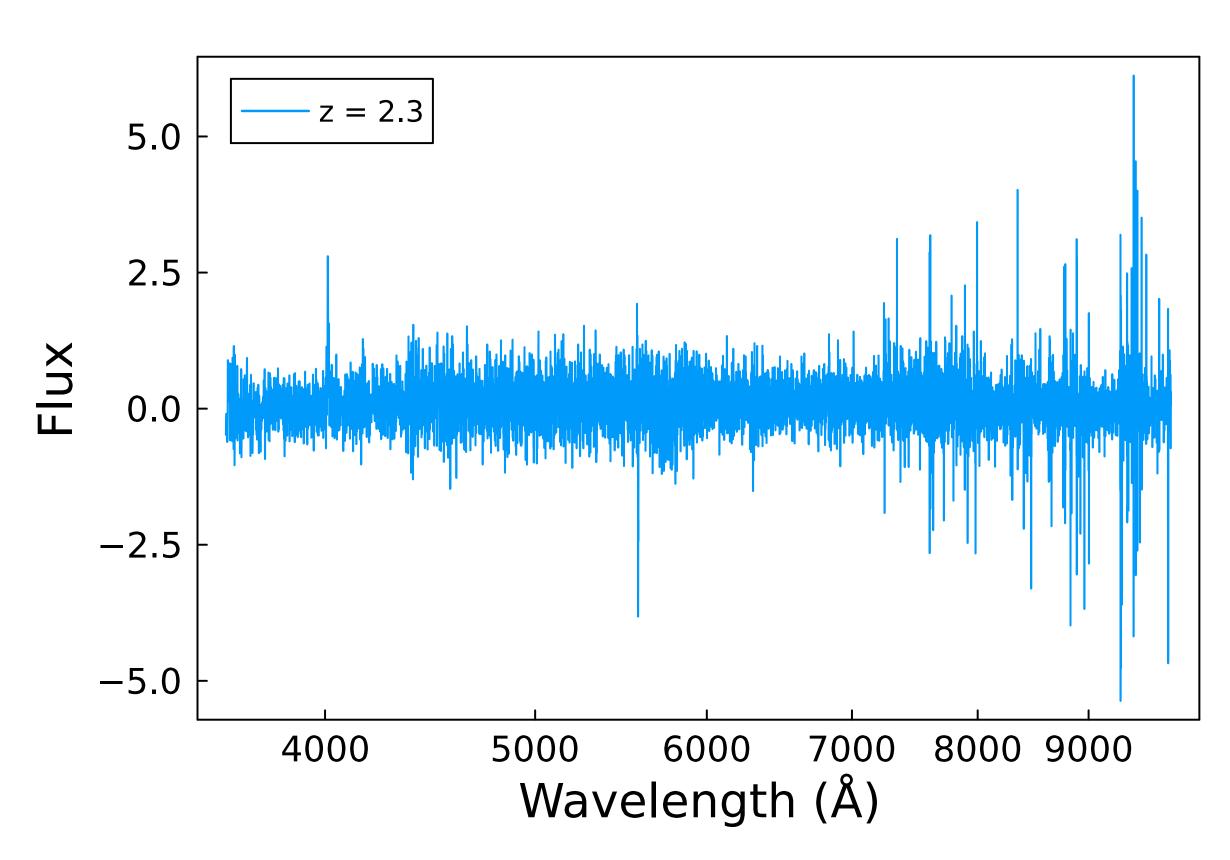
~0.4 s/spectrum

Ana Sofia Uzsoy

We validate our method with injection-recovery tests.

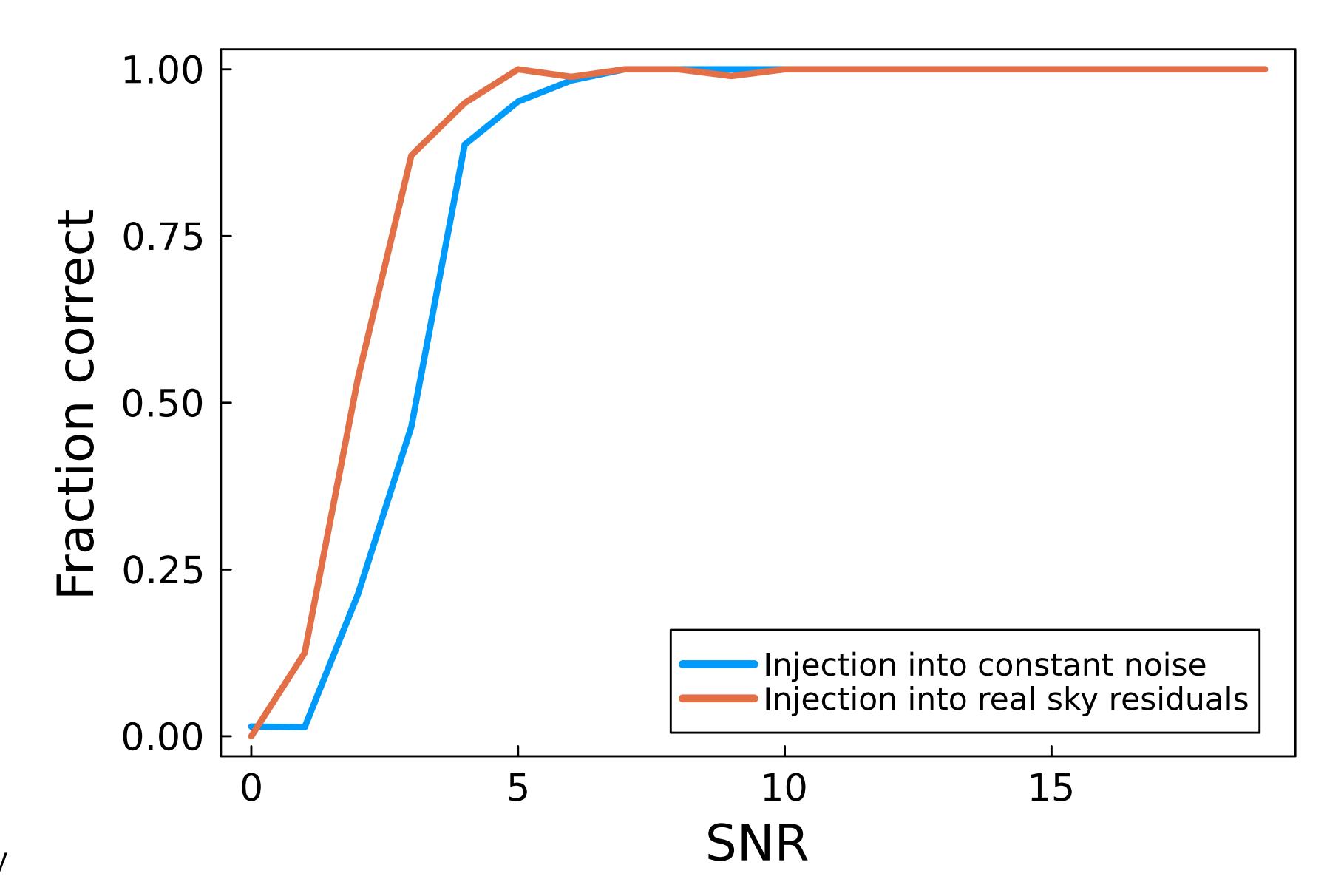


Injection into constant noise



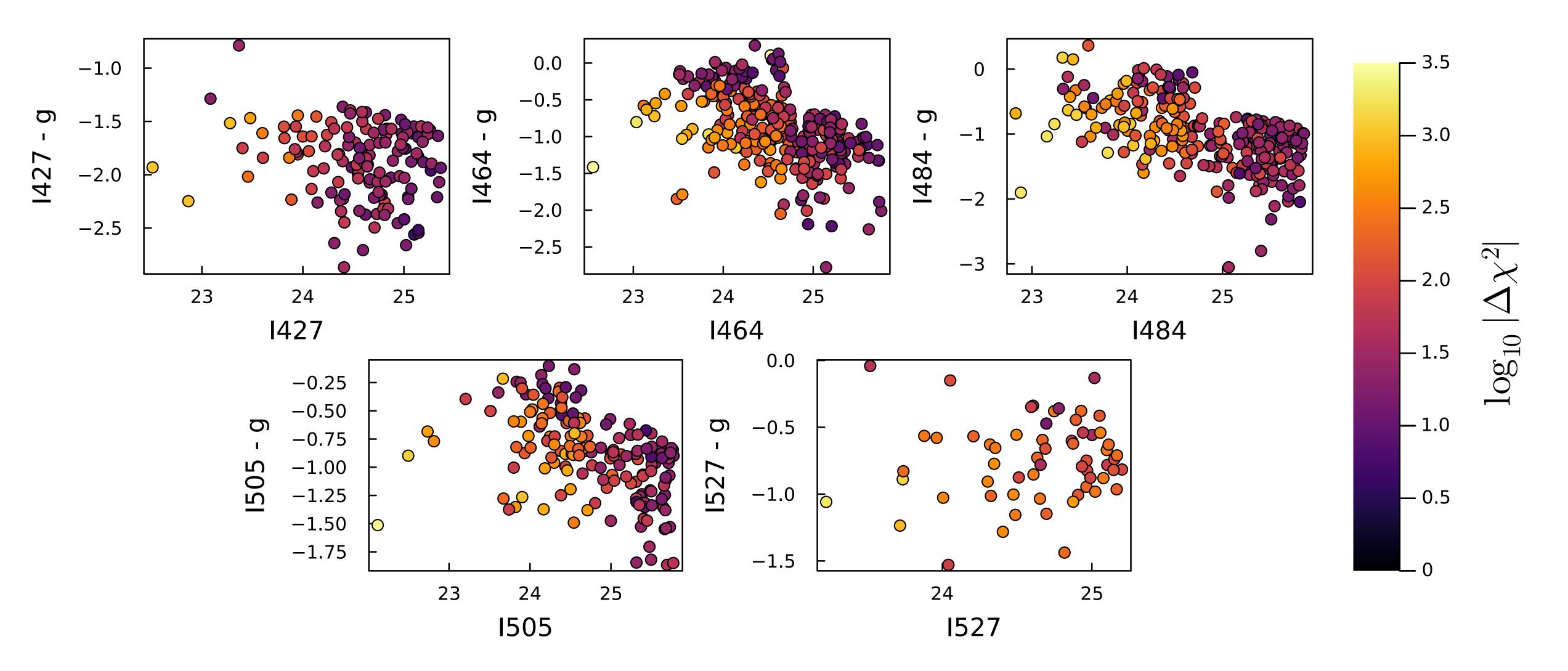
Injection into actual sky spectra

We validate our method with injection-recovery tests.

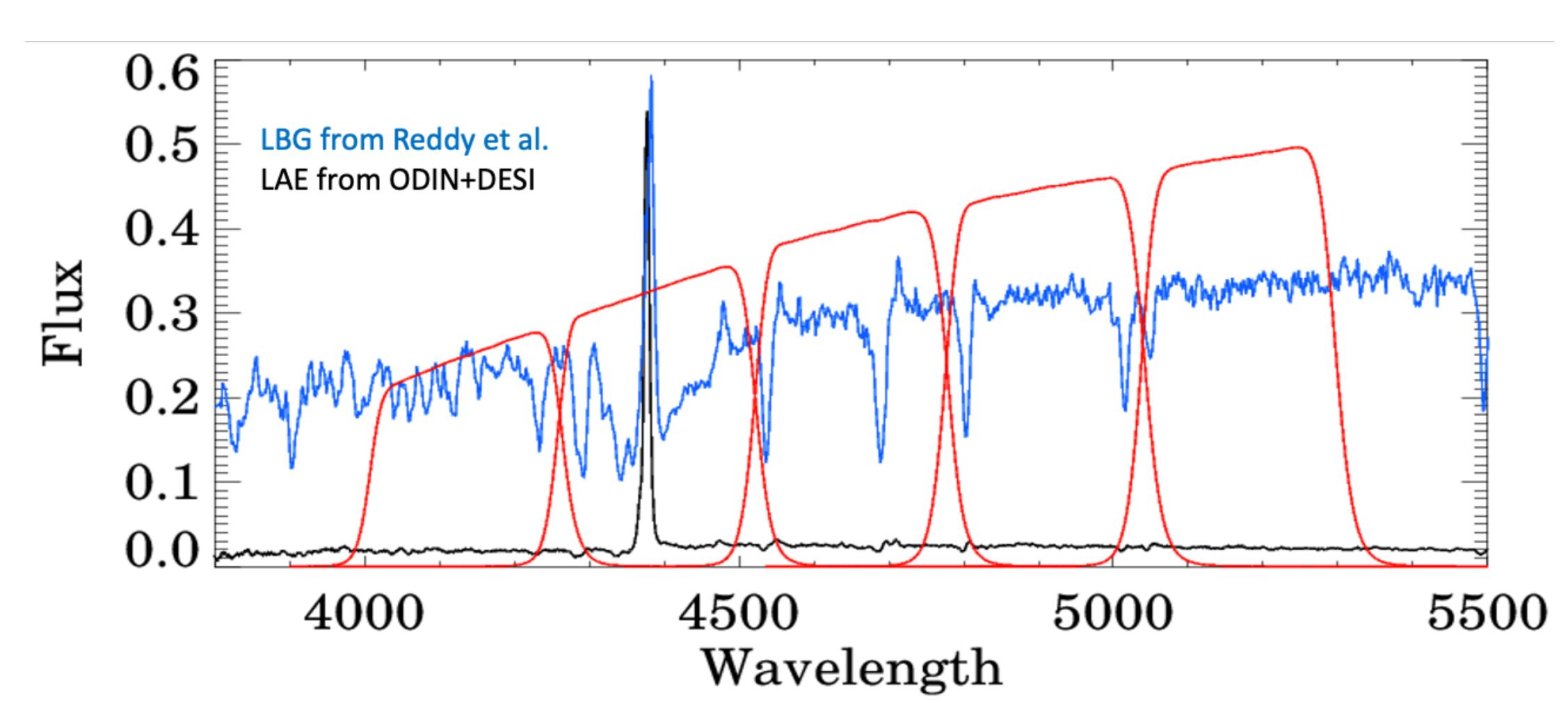


Ana Sofia Uzsoy

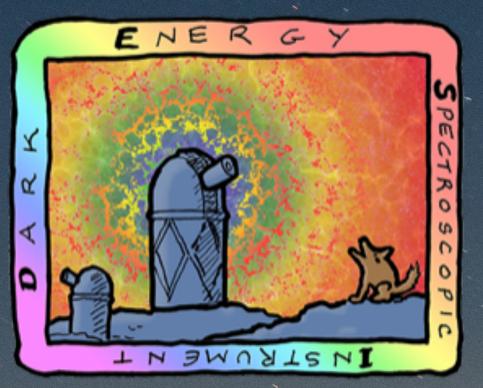
Implications for targeting with medium bands



Intermediate-Band Imaging Survey (IBIS)



Ana Sofia Uzsoy

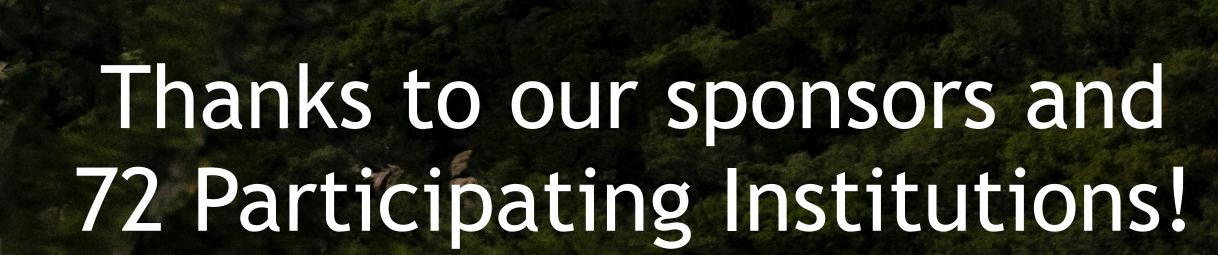


DARK ENERGY SPECTROSCOPIC INSTRUMENT

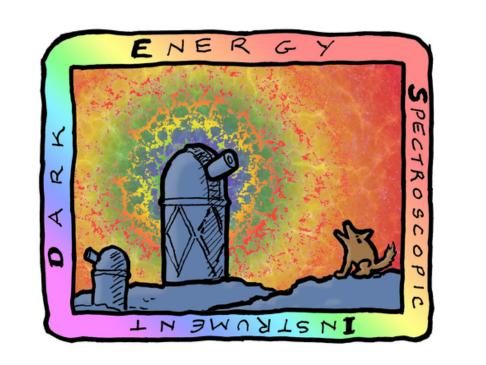
U.S. Department of Energy Office of Science

Science & Technology Facilities Council

CONAHCYT

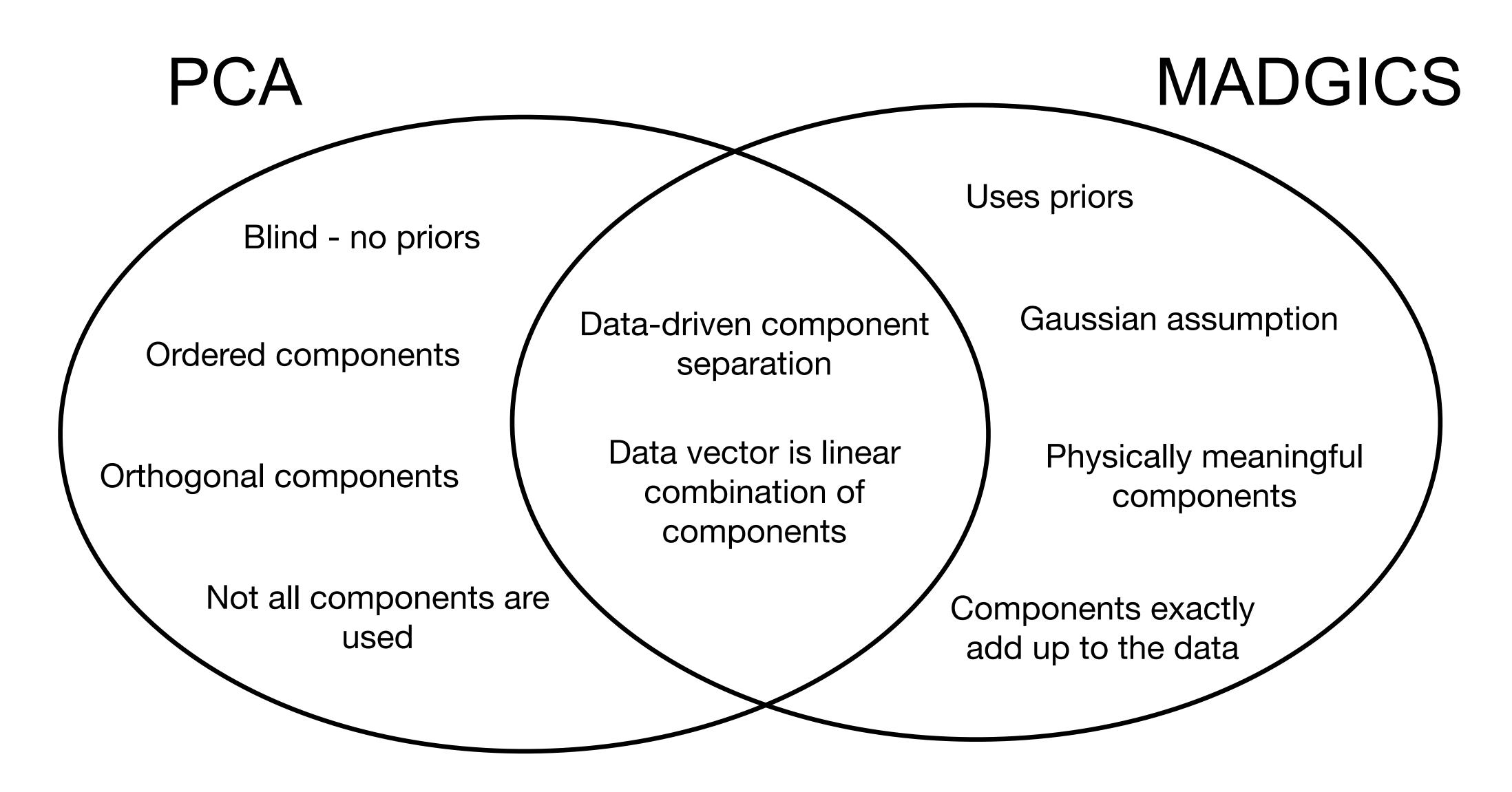


Summary

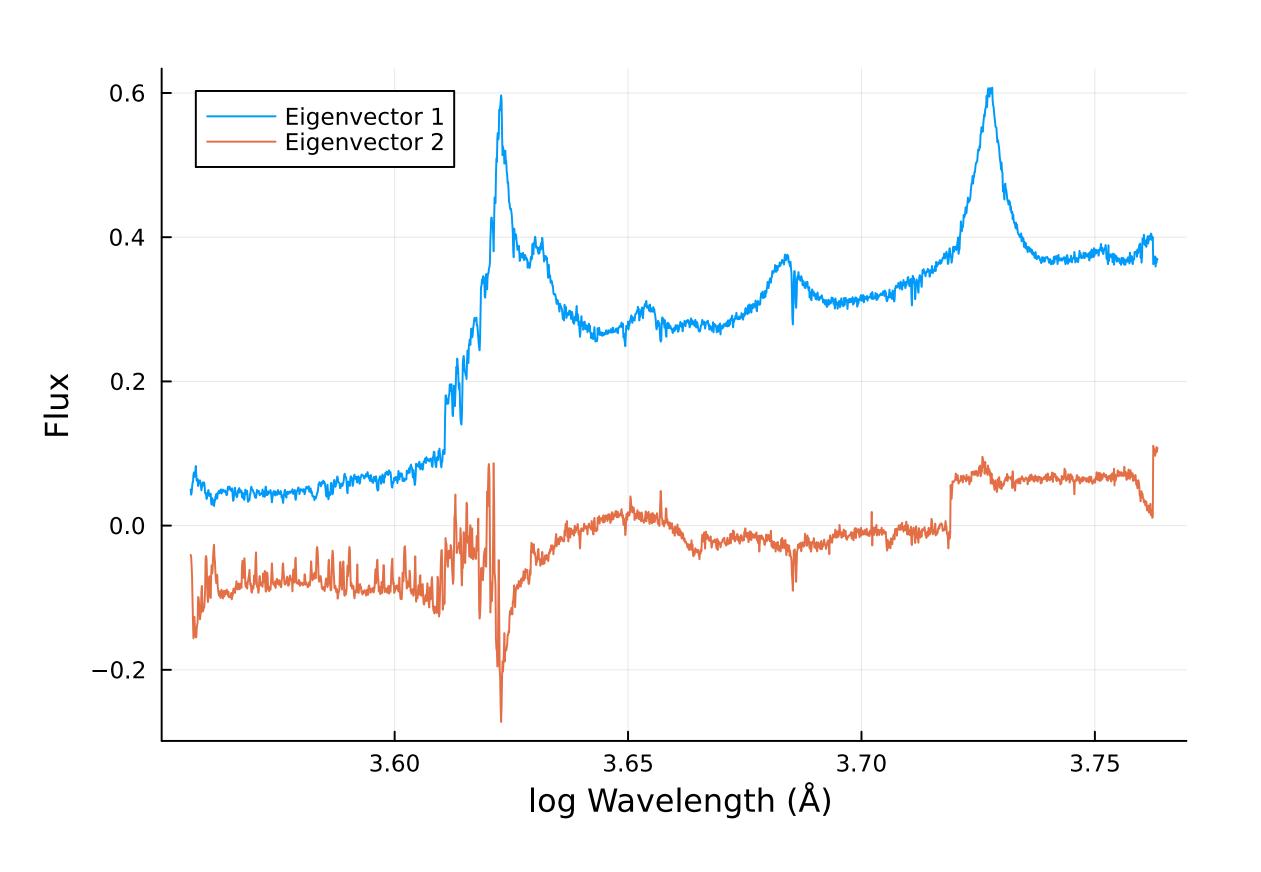


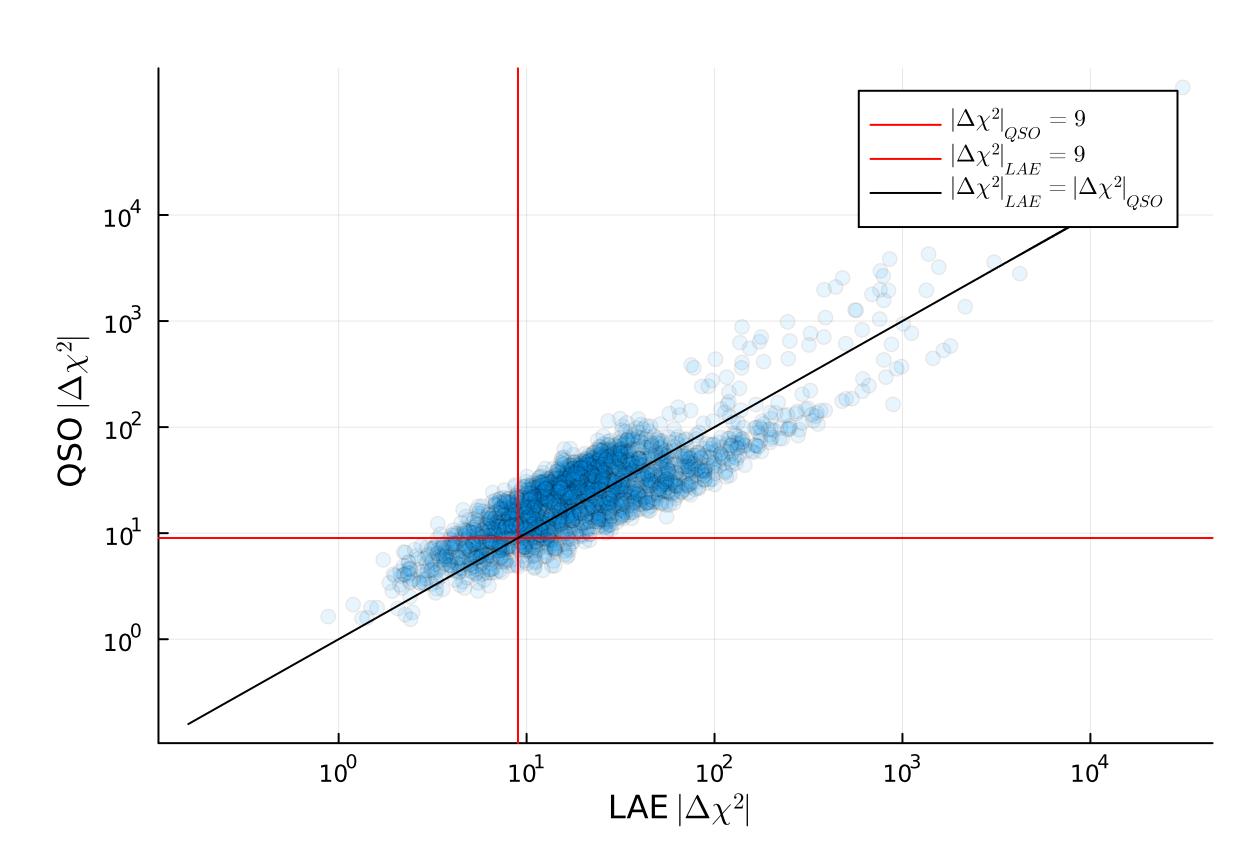
- MADGICS is a Bayesian component separation technique that separates data into any number of Gaussian components.
- We create data-driven priors and express an LAE spectrum as a sum of a sky, LAE, and residual component.
- We present an automated spectroscopic redshift determination arXiv:2504.06870 pipeline for LAEs in DESI and explore implications for selecting LAEs with medium-band photometry.

How is this not just PCA?

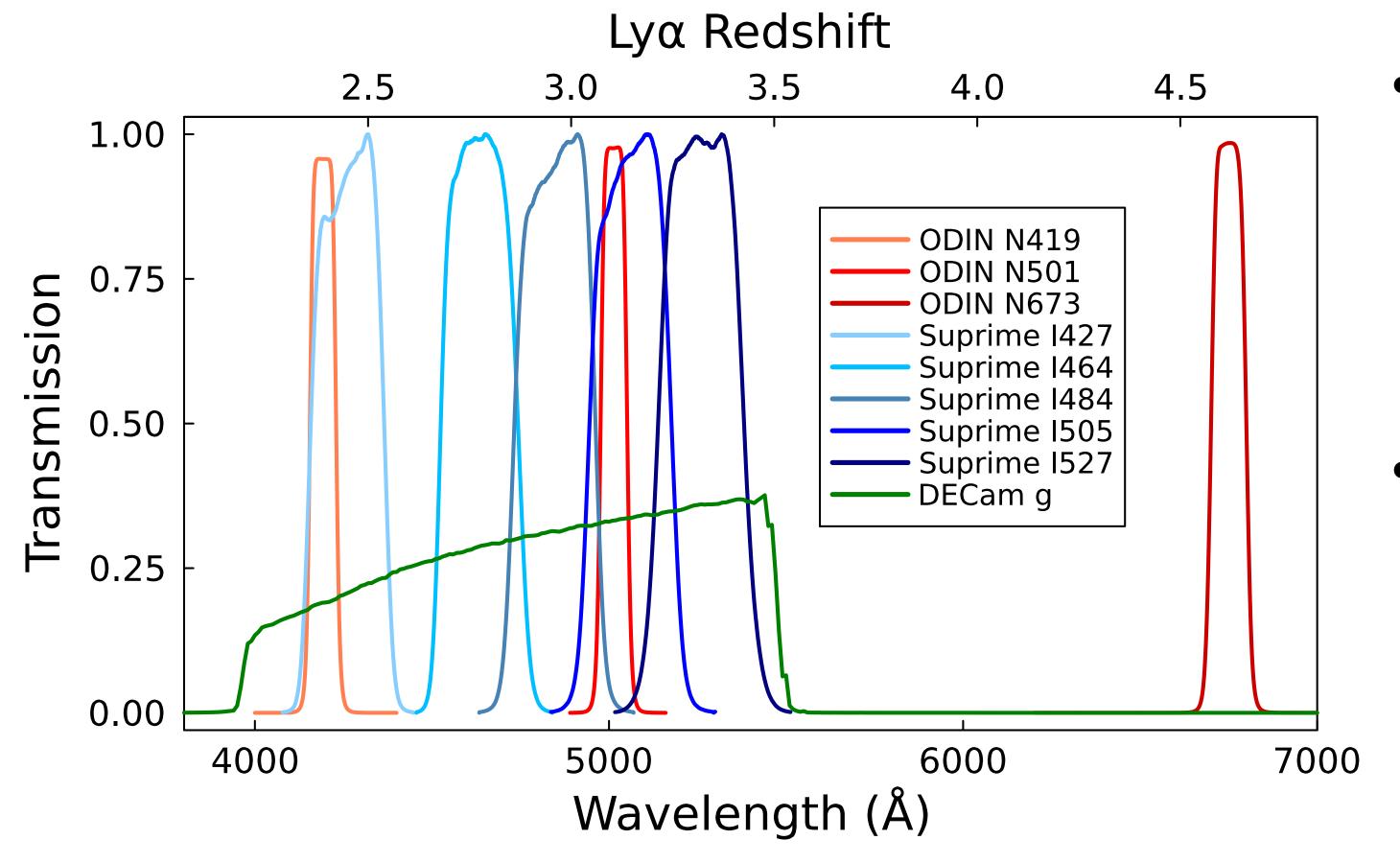


LAE vs. quasar classification





We use DESI spectra from LAEs targeted with two different photometric surveys.



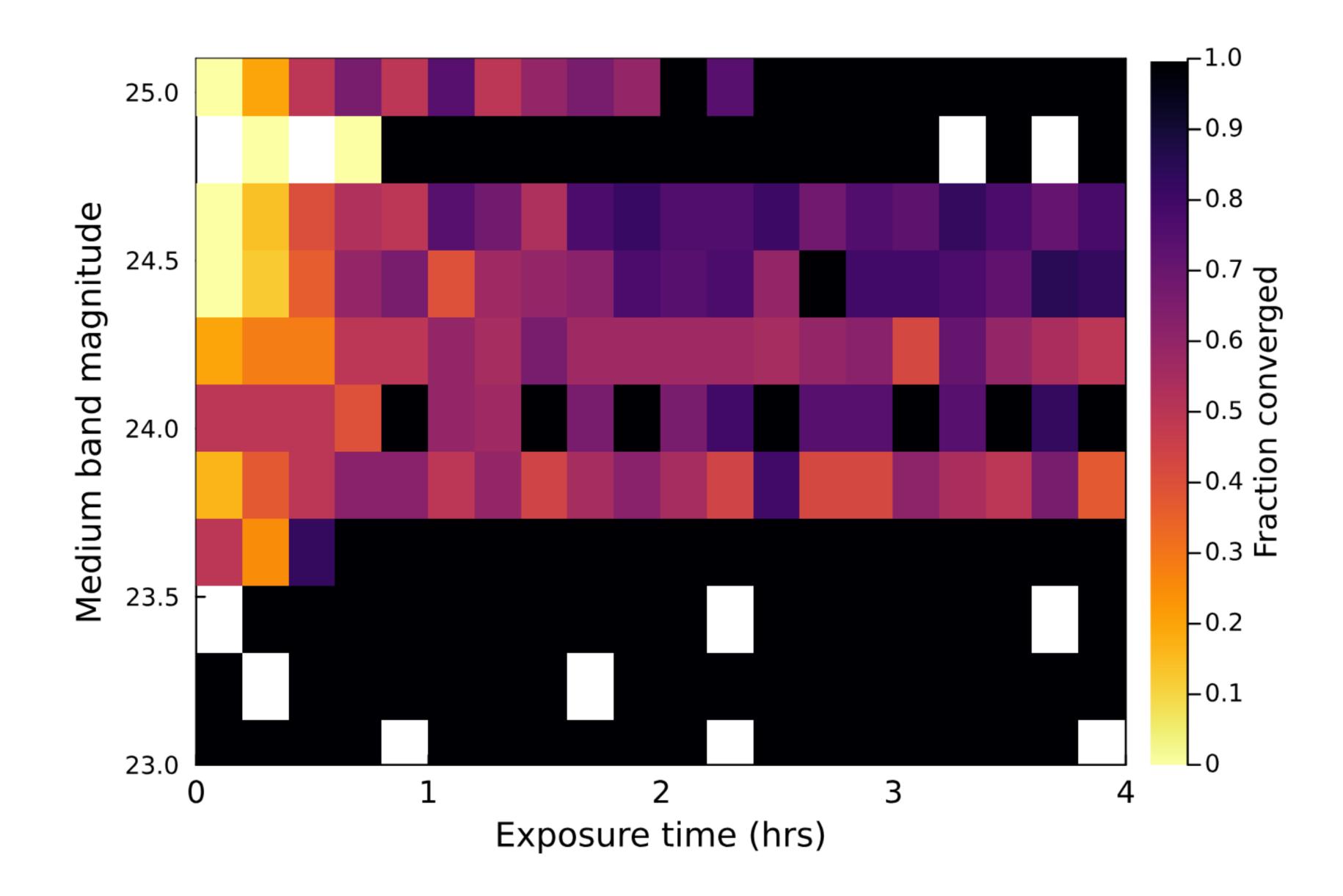
- ODIN
 - DECam
 - Narrow bands, ~100 Å FWHM
- COSMOS
 - Subaru Suprime-Cam
 - Medium bands, ~250 Å FWHM

Summary of priors

- C_{sky} : low-rank matrix approximation from top 50 sky eigenvectors
- C_{LAE} : data-driven covariance matrix from VI ODIN LAE targets all shifted to be at the same redshift
- C_{res} : 1/ivar on diagonal for each target

$$C_{tot} = C_{sky} + C_{LAE} + C_{res}$$

For how long should we observe LAEs?



How do we calculate $\Delta \chi^2$?

$$\chi^2 = X_{tot}^T C_{tot}^{-1} X_{tot}$$

We can then evaluate the change in χ^2 , or $\Delta \chi^2$, from including vs. not including the LAE component:

$$\Delta \chi^2 = X_{tot}^T \left(C_{sky} + C_{LAE} + C_{res} \right)^{-1} X_{tot} - X_{tot}^T \left(C_{sky} + C_{res} \right)^{-1} X_{tot}$$

where C_{sky} , C_{LAE} , and C_{res} are the covariance matrices for the sky, LAE, and residual components