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Reionization and it's parameters

e Reionization is a landmark
in structure formation.

e Photons from the first
radiating sources began
ionizing the neutral
Intergalactic medium.

« However, how and when
ionization occurred is still
up for debate.
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lonized Bubbles
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(V = 0). The evolution of Tigm with redshift reflects the increase of the
volumetric neutral fraction xy; towards higher z (see legend).

11/04/2025 Lyman 2025, OAC, Crete



lonized Bubbles
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Figure 5. Minimum observable Ly« velocity offset, Av, as a function of bubble size and residual neutral fraction, assuming > 10 per cent transmission on the red
or blue sides. Left-hand panel: for a constant residual neutral fraction, Xy, inside the ionized bubble. Right-hand panel: xy;; o 2, with the quoted value at 0.1 Mpc.
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LAGER

« Narrow band survey using the
4mt Blanco Telescope + DECam

o Filter centered on 9640AA -> Lya
at z76.9.

o Four fields published so far
(Hu+19, Wold+22) and a fifth
field in progress (Moya-Sierralta
in prep).

e ¥300 candidates and ~40
spectroscopic confirmations.
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Figure 3. FIRE 2D and 1D spectra of CDFS-LAEL1 at the wavelength of Lya, N VA1240, C IvA1548,1551, He 1A1640, O 1]A1661,1666, C 11]A1907,1909 lines.
The blue solid line is the spectra and the red dashed line is the 1o error. The green vertical dashed line shows the expected line positions assuming redshift = 6.9245,
N O m e ta I I i n e S We re ;vhich is %ex;ivetg dfrotmS t/hls [faéc of the observed Lya: profile. The green shades show 4200 km s ' wavelength regions around the expected line position. No UV metal
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detected.
o Hint of two peaks?
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Observations

« We observed CDFS1 during
the nights of December
12th, 13th and. 14th of the
year 2020.

« We used Magellan/FIRE with
the 0.6 slit.

e After discarding bad

Parameter Measurement ° 2 40 80

exposures, we are left with fLyaL 463%%31%3
og 37003
4x1 hour frames. EW,, 79+§)4

fuelya)  0.87009
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Reduction and output spectra

Data was reduced with the FIREHOSE pipeline and with pypeit.
FIREHOSE yielded a higher SNR so we stuck with it.

No continuum is seen on the data. Thus, we stack the exposures by centering on the emission line
after visual inspection.

A double peak with a separation of ~100 km/s is detected.
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Modelling

o We use FLaREON to model the profile, which takes three parameters.
e V_expis the expanding medium velocity.

« Log(NH) is the neutral hydrogen column density, which regulates the
number of scattering events.

« Log(Tau) is the dust optical length, which regulates how many scattering
events lead to absorption
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Figure 1. The Ly« line properties in different geometries. The left panels show a cartoon of the Biconical wind, Thin shell and Galactic
wind. The middle panels show the Lya escape fraction as a function of dust optical depth of absorption 7, for the three geometries and
outflow configuration as shown in the legend. The right panels show examples of Ly line profiles for the configurations described in the
legend.
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Figure 7. Comparison between the proper calculation of a Ly«
line profile emerging from an inflow configuration using LyaRT
and the outputs of FLaREON. This example was built with the
Thin shell as gas geometry, log Ng[cm™2] = 20, log7, = —3.25 and
[Vexp| = 100 km/s. In blue we show the full RT computation by
LyaRT using Vexp = —100 km/s. In green we show the FLaREON’s pre-
diction using Vexp = +100 km/s. In dashed red we show FLaREON’s
output after the remapping of the wavelength (Eq.8).
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Modelling
« We first model the line as a double gaussian /LA N L . el "
to measure the redshift and B/R ratio.

e We then use the FLaREON python library to
fit radiative transfer models to our data.

e Our model fitting considers five parameters: ot
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Model comparison

In order to put the
models in context, we
attempt to model other
double peaks in the
literature.

We find that FLaREON is
able to model these
sources WITHOUT THE
NEED OF AN IGM
COMPONENT.

We also see how
different CDFS1 is from
these systems.

All systems show
fesc(Lya)>0.9 (Using
FLaREON’s analytical
model).
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Model comparison

e Results are highly
model dependent.

e Nevertheless,
FLaREON allows us
to estimate
sytemic redshifts
and compare
different Lya
profiles in a
systematic fashion.
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Origin of the doubly peaked line

« While CDFS1 might not be a “canonical” double peak, our inferred
z_sys yields a small velocity offset (~70 km/s). Implying that radiation
can easily escape the galaxy.

e The systemic redshift could fall between the peaks, making CDFS1 a
highly ionizing source.

e The double peak could come from kinematic effects. We compute a
dynamical mass of 10210 Msol in that scenario.
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