

A resolved Lyman-Alpha profile with doubly peaked emission at z~7

Las Campanas Observatory Cristóbal Moya-Sierralta
Luis Felipe Barrientos
Leopoldo Infante
Jorge González-López
LAGER Collaboration

Reionization and it's parameters

- Reionization is a landmark in structure formation.
- Photons from the first radiating sources began ionizing the neutral Intergalactic medium.
- However, how and when ionization occurred is still up for debate.

Figure adapted from Naidu+20 Red star from Wold+22

Ionized Bubbles

- Ionized regions of the universe allow photons with λ <1215.67AA to move freely.
- This regions of ionized gas, or "bubbles" would grow and merge with other bubbles until reionization was complete.

14 Garel et al.

Figure 13. Ly α IGM transmission as a function of rest-frame wavelength at z = 6, 7, 8, and 9. The vertical red dotted line indicates the line centre (V = 0). The evolution of T_{IGM} with redshift reflects the increase of the volumetric neutral fraction x_{HI} towards higher z (see legend).

Ionized Bubbles

Mason & Gronke 20

- Bubbles are interesting because they host the objects contributing most of the ionizing budget.
- Bubbles should trace overdensities.
- Measuring the extent of the Lya line constrains the minimum size of the bubble.

Figure 5. Minimum observable Ly α velocity offset, Δv_{α} as a function of bubble size and residual neutral fraction, assuming > 10 per cent transmission on the red or blue sides. Left-hand panel: for a constant residual neutral fraction, $x_{\rm HI}$, inside the ionized bubble. Right-hand panel: $x_{\rm HI} \propto r^2$, with the quoted value at 0.1 Mpc.

LAGER

- Narrow band survey using the 4mt Blanco Telescope + DECam
- Filter centered on 9640AA -> Lya at z~6.9.
- Four fields published so far (Hu+19, Wold+22) and a fifth field in progress (Moya-Sierralta in prep).
- ~300 candidates and ~40 spectroscopic confirmations.

Yang+19

- Yang+19 presented spectroscopic confirmation of two z~7 LAEs.
- One of them (LAGER-CDFS1) was observed with Magellan/FIRE.
- No metal lines were detected.
- Hint of two peaks?

Figure 3. FIRE 2D and 1D spectra of CDFS-LAE1 at the wavelength of Ly α , N v λ 1240, C IV λ 1548,1551, He II λ 1640, O III] λ 1661,1666, C III] λ 1907,1909 lines. The blue solid line is the spectra and the red dashed line is the 1 σ error. The green vertical dashed line shows the expected line positions assuming redshift = 6.9245, which is derived from the peak of the observed Ly α profile. The green shades show \pm 200 km s⁻¹ wavelength regions around the expected line position. No UV metal lines are detected at S/N > 5.

Observations

- We observed CDFS1 during the nights of December 12th, 13th and. 14th of the year 2020.
- We used Magellan/FIRE with the 0.6" slit.
- After discarding bad exposures, we are left with 4x1 hour frames.

Reduction and output spectra

- Data was reduced with the FIREHOSE pipeline and with pypeit.
- FIREHOSE yielded a higher SNR so we stuck with it.
- No continuum is seen on the data. Thus, we stack the exposures by centering on the emission line after visual inspection.
- A double peak with a separation of ~100 km/s is detected.

Modelling

- We use FLaREON to model the profile, which takes three parameters.
- V_exp is the expanding medium velocity.
- Log(NH) is the neutral hydrogen column density, which regulates the number of scattering events.
- Log(Tau) is the dust optical length, which regulates how many scattering events lead to absorption

Figure 1. The Ly α line properties in different geometries. The left panels show a cartoon of the Biconical wind, Thin shell and Galactic wind. The middle panels show the Ly α escape fraction as a function of dust optical depth of absorption τ_a for the three geometries and outflow configuration as shown in the legend. The right panels show examples of Ly α line profiles for the configurations described in the legend.

Figure 7. Comparison between the proper calculation of a Ly α line profile emerging from an inflow configuration using LyaRT and the outputs of FLaREON. This example was built with the Thin shell as gas geometry, $\log N_{\rm H}[{\rm cm}^{-2}] = 20$, $\log \tau_{\rm a} = -3.25$ and $|V_{\rm exp}| = 100$ km/s. In blue we show the full RT computation by LyaRT using $V_{\rm exp} = -100$ km/s. In green we show the FLaREON's prediction using $V_{\rm exp} = +100$ km/s. In dashed red we show FLaREON's output after the remapping of the wavelength (Eq.8).

Modelling

- We first model the line as a double gaussian to measure the redshift and B/R ratio.
- We then use the FLaREON python library to fit radiative transfer models to our data.
- Our model fitting considers five parameters:
 Vexp, LogNH, dust absorption tau, systemic redshift, and a scaling factor..

Model comparison

- In order to put the models in context, we attempt to model other double peaks in the literature.
- We find that FLaREON is able to model these sources WITHOUT THE NEED OF AN IGM COMPONENT.
- We also see how different CDFS1 is from these systems.
- All systems show fesc(Lya)>0.9 (Using FLaREON's analytical model).

Model comparison

- Results are highly model dependent.
- Nevertheless, FLaREON allows us to estimate sytemic redshifts and compare different Lya profiles in a systematic fashion.

Origin of the doubly peaked line

- While CDFS1 might not be a "canonical" double peak, our inferred
 z_sys yields a small velocity offset (~70 km/s). Implying that radiation
 can easily escape the galaxy.
- The systemic redshift could fall between the peaks, making CDFS1 a highly ionizing source.
- The double peak could come from kinematic effects. We compute a dynamical mass of 10^10 Msol in that scenario.

CDFS-1

- We have found the highest redshift (6.93) doubly-peaked LAE.
- At first glance, this could suggest the presence of an ionized bubble around this source.
- However, the differences between CDFS1 and similar sources might indicate a different origin for the line profile.
- Measuring the systemic redshift for objects like CDFS1 is crucial.

A resolved Lyman-Alpha profile with doubly peaked emission at z~7

Leopoldo Infante

Jorge González-López

LAGER Collaboration

Las Campanas Observatory