Cutting through the Clouds Comparing Indirect Tracers of Ionizing Photon Escape

Kaelee S. Parker

University of Texas at Austin

Lyman 2025 Conference Orthodox Academy of Crete April 9, 2025

Collaborators: Danielle Berg, John Chisholm, Simon Gazagnes, + CLASSY collaboration

The amount ionizing radiation that can escape depends on...

how much is produced

determined by the stellar populations present + other ionizing sources (ex: AGN, HMXB)

characteristics of the neutral gas

geometry, densities, kinematics, quantity, + dust content

Kaelee S. Parker Motivation

The amount ionizing radiation that can escape depends on...

how much is produced

determined by the stellar populations present + other ionizing sources (ex: AGN, HMXB)

characteristics of the neutral gas

geometry, densities, kinematics, quantity, + dust content

but it is often not possible to directly observe the escaping LyC from galaxies at high-z

A variety of methods have been developed to indirectly estimate $f_{\rm esc}$

Kaelee S. Parker Motivation

COS Legacy Archive Spectroscopic SurveY

45 nearby (z < 0.3) star-forming galaxies

- high-S/N and high-resolution (R ~ 15000)
- FUV HST/COS spectra
- broad wavelength coverage (~1100-2000Å)
- span a large ranges of galaxy properties

COS Legacy Archive Spectroscopic SurveY

45 nearby (z < 0.3) star-forming galaxies

- high-S/N and high-resolution (R ~ 15000)
- FUV HST/COS spectra
- broad wavelength coverage (~1100-2000Å)
- span a large ranges of galaxy properties

COS Legacy Archive Spectroscopic SurveY

45 nearby (z < 0.3) star-forming galaxies

- high-S/N and high-resolution (R \sim 15000)
- FUV HST/COS spectra
- broad wavelength coverage (~1100-2000Å)
- span a large ranges of galaxy properties

SFRs similar to galaxies at $z \sim 2$

Berg+22

COS Legacy Archive Spectroscopic SurveY

45 nearby (z < 0.3) star-forming galaxies

- high-S/N and high-resolution (R ~ 15000)
- FUV HST/COS spectra
- broad wavelength coverage (~1100-2000Å)
- span a large ranges of galaxy properties

SFRs similar to galaxies at $z \sim 2$

Berg+22

21-cm HI measurements

Parker+24

Galaxy	$\log(M_{HI})$
	(M_{\odot})
J0036-3333	8.77±0.02
J0127-0619	8.16±0.05
	8.21±0.07
J0144+0453	8.66 ± 0.01
	8.63±0.02
J0337-0502	9.07±0.08
	8.69±0.18
J0405-3648	7.83 ± 0.01
J0808+3948	< 8.10
J0823+2806	10.19 ± 0.08
	10.09±0.04
10006 1105	< 10.45
J0926+4427	< 11.49
J0934+5514	7.88±0.02
J0938+5428	< 8.07
************	7.40±0.01
J0940+2935	7.40±0.05
J0942+3547	< 6.56
J0944-0038	9.09±0.02
J0944+3442	9.69+0.01
	7.86 ± 0.01
J1016+3754	8.00±0.01
J1024+0524	< 8.28
J1044+0353	8.36±0.04
J1105+4444	9.84 ± 0.01

• • •

COS Legacy Archive Spectroscopic SurveY

45 nearby (z < 0.3) star-forming galaxies

- high-S/N and high-resolution (R ~ 15000)
- FUV HST/COS spectra
- broad wavelength coverage (~1100-2000Å)
- span a large ranges of galaxy properties

SFRs similar to galaxies at $z \sim 2$

Berg+22

21-cm HI measurements

Parker+24

SPS fits (Starburst99)

Parker+(in prep.)

- 1. LIS covering fraction
- 2. UV beta-slope
- 3. peak separation of Ly α
- 4. LyCsurv
- 5. RAMSES-RT simulation

Fit
Predicted from fit
Data
Uncertainty
MW contamination

- 1. LIS covering fraction
- 2. UV beta-slope
- 3. peak separation of Ly α
- 4. LyCsurv
- 5. RAMSES-RT simulation

$$f_{\text{esc}}^{C_f} = 10^{-0.4k_{912}E_{\text{B-V}}} \times (1 - C_f(\text{H I}))$$
(Chisholm+18)

Using neutral and low-ionization covering fractions from Parker+24

- 1. LIS covering fraction
- 2. UV beta-slope
- 3. peak separation of Ly α
- 4. LyCsurv
- RAMSES-RT simulation

LyCsurv (Jaskot+24a,b)

Multivariate estimator of $f_{\rm esc}$

- using properties of LzLCS+ (Flury+22a,b)
- incorporates both detections and non-detections of $f_{\rm esc}$

Code on Github: https://github.com/sflury/LyCsurv

- 1. LIS covering fraction
- 2. UV beta-slope
- 3. peak separation of Ly α
- 4. LyCsurv
- 5. RAMSES-RT simulation

Used the intrinsic $f_{\rm esc}$ from the Gazagnes+23 best-fits for CLASSY

→ using ~22500 spectra from a hydrodynamical (Ramses-RT) galaxy (Mauerhofer+21)

Binning by stellar populations

	$\langle t_{SP} \rangle$	N	Threshold
A	2.4 ^{+1.5} _{-0.8} Myr	8	$F(<4\mathrm{Myr})\geq0.75$
			$F(< 4 \mathrm{Myr}) < 0.75$
В	$5.1^{+3.0}_{-2.1}$ Myr	12	and
			$F(>7{\rm Myr})<0.25$
C	11.3 ^{+4.2} _{-5.5} Myr	25	$F(>7\mathrm{Myr}) \ge 0.25$

← O-stars dominate

 significant contributions are possible from SN

Binning by stellar populations

	$\langle t_{SP} \rangle$	N	Threshold
A	2.4 ^{+1.5} _{-0.8} Myr	8	$F(<4\mathrm{Myr})\geq0.75$
			$F(< 4 \mathrm{Myr}) < 0.75$
В	5.1 ^{+3.0} _{-2.1} Myr	12	and
			$F(>7 \mathrm{Myr}) < 0.25$
C	11.3 ^{+4.2} _{-5.5} Myr	25	$F(>7\mathrm{Myr}) \ge 0.25$

← O-stars dominate

 significant contributions are possible from SN

$\operatorname{Our} f_{\operatorname{esc}}$ predictions correlate with properties of the dust and gas

global + line-of-sight HI + low-ionization

In Summary

Keep an eye out for these results in Parker et al. (in prep.)

With the high-resolution nearby CLASSY galaxies, we found:

- general agreement between five indirect methods of predicting $f_{\rm esc}$
 - o with some systematic differences
- multiple LyC-leaker candidates among the CLASSY sample
- the onset of supernova is a main driver for high escape fractions in CLASSY
- correlations between escape fraction and
 - the **total** amount of HI gas present, $log(M_{HI})$
 - line-of-sight LIS gas absorption, \mathbf{R}_{f}
 - line-of-sight dust attenuation, E(B-V)

