Illuminating the Escape from the Galactic Labyrinth Through X-rays

Margaritis Chatzis

Escape of Lyman radiation from galactic labyrinths OAC, Kolymbari, Crete

Questions

- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

Answers

- ULX are producing significant amounts of Hell ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

Contents | Following the Thread

Questions

- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

Chandra

- Resolves ULX population
- Provides info on individual ULX+ local background
- Allows variability studies between observations

<u>Answers</u>

- ULX are producing significant amounts of HeII ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

Contents | Following the Thread

Questions

- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

Chandra

- Resolves ULX population
- Provides info on individual ULX
 + local background
- Allows variability studies between observations

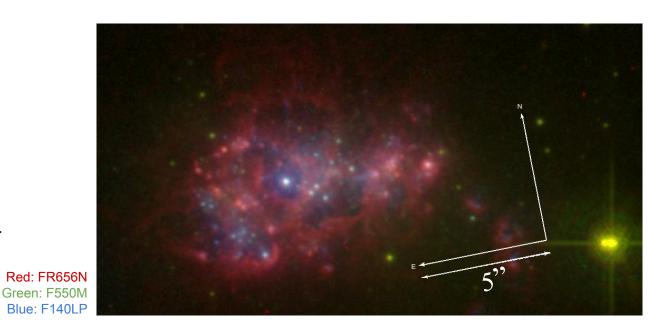
XMM-Newton

- Supplements Chandra in soft X-rays
- Detects galactic halo emission

Answers

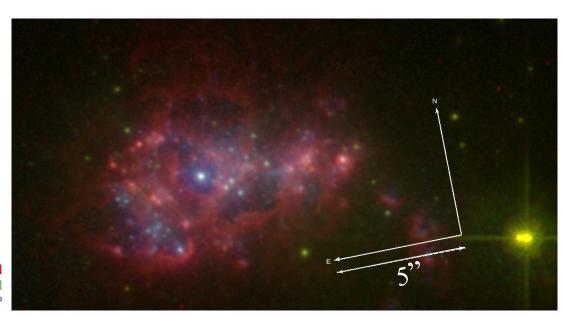
- ULX are producing significant amounts of HeII ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

Ionizing Sources in Galaxies


- A. Hot massive stars in clusters
- B. Ultra luminous X-ray sources (ULX)
 - Binaries consisting of massive stars and compact objects (high-mass X-ray binaries)
 - Luminosities ≥ 10³⁹ erg·s⁻¹
- C. Diffuse X-ray emission
 - Extended emission filling the galaxy
 - Collisionally ionized plasma

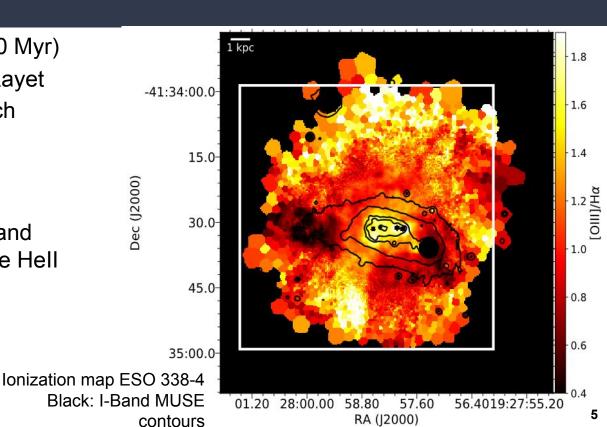
Antennae Galaxies. Blue: X-rays, Gold: Optical, Red: Infrared. Credit: NASA 2

ESO 338-4 | Blue Compact Dwarf Galaxy with HST


- Also goes by the name of:
 - Tololo 1924-416
 - ➤ ESO 338-IG04
- Blue compact dwarf galaxy. A proxy for high redshift Lyα emitters.
- Low metallicity of 12% solar or 12+log(O/H)=7.9
- ❖ Distance ~ (37.5-40) Mpc

ESO 338-4 | Blue Compact Dwarf Galaxy with HST

- Vigorous starburst for the last ~ 40 Myr
- Star formation rate
 (SFR) ≈ (0.6-3.2)M_☉·yr⁻¹
- Total mass
 M ≈ 4·10⁹M_☉
- Comparison with Milky Way:
 - ➤ Total mass $\approx 10^{12} M_{\odot}$
 - SFR order of 1 M_☉·yr⁻¹


Red: FR656N Green: F550M Blue: F140LP

ESO 338-4 | Blue Compact Dwarf Galaxy with HST

Large population of young (<10 Myr) super-star clusters with Wolf-Rayet features. Most massive of which cluster 23 (~10⁷M_☉)

Observed $L_{Hell} \approx 2.10^{39} \text{ erg} \cdot \text{s}^{-1}$. Considering both broad (star) and narrow (nebula) emission of the Hell 4686 line from MUSE data

Bik et al. 2018

Contents | Following the Thread

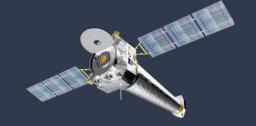
Questions

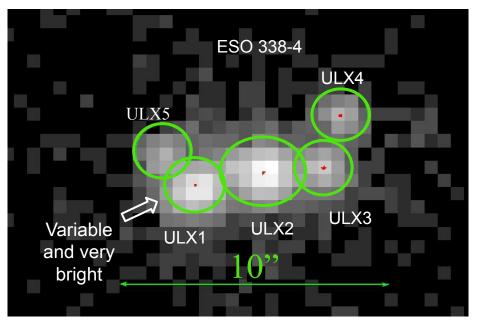
- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

Chandra

- Resolves ULX population
- Provides info on individual ULX+ local background
- Allows variability studies between observations

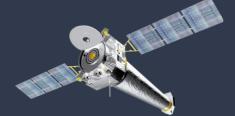
XMM-Newton

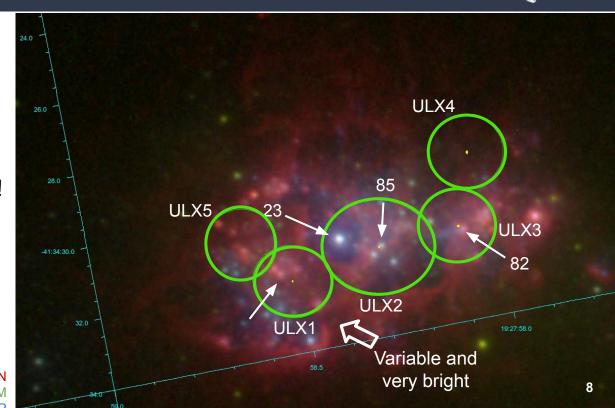

- Supplements Chandra in soft X-rays
- Detects galactic halo emission


<u>Answers</u>

- ULX are producing significant amounts of HeII ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

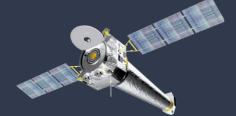
Chandra | Imaging of ESO 338-4


- General
 - > 1 pixel ≈ 0.5"
 - Energies between 0.5-7 keV (~1.8-25 Å).
 - **BUT** weak soft response.
 - Full Chandra FoV allows for astrometry with Gaia
- For ESO 338-4 Chandra:
 - Detects 5 ULX!1 very bright and variable.
 - Detects local diffuse emission!

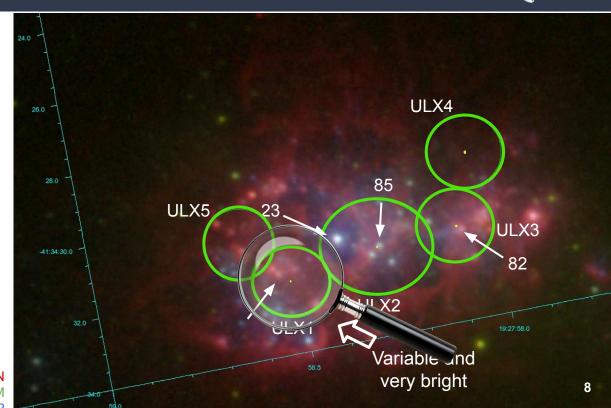

GREEN: ellipse enclosing 3σ of the photons associated with the source

RED: ULX location

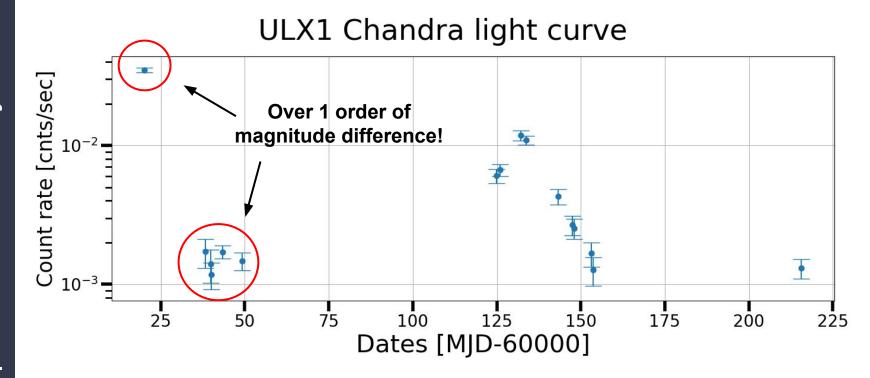
Chandra | Optical Counterparts



- ULX Super star cluster association for ULX2, 3, and possibly 5
- No XRB located at cluster 23!
- Nearest cluster for ULX1 is 0.3" equal to ≈ 0.2 kpc

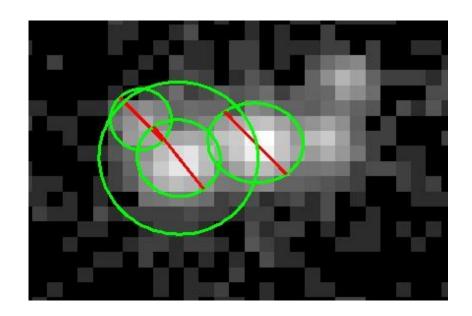


Red: FR656N Green: F550M Blue: F140LP


Chandra | Optical Counterparts

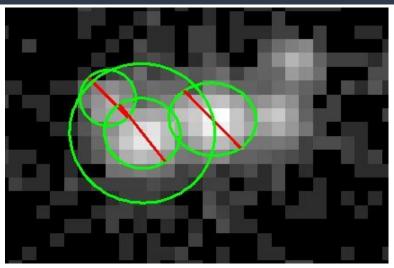
- ULX Super star cluster association for ULX2, 3, and possibly 5
- No XRB located at cluster 23!
- Nearest cluster for ULX1 is 0.3" equal to ≈ 0.2 kpc

Red: FR656N Green: F550M Blue: F140LP


In our analysis we take the average. **BUT** the true average might be higher!

Meaning a brighter than thought source.

- Chandra allows us to fit models to both the ULX emission <u>AND</u> the <u>local</u> diffuse emission
- ❖ ULX@ model components:
 galactic absorption ¥
 intrinsic absorption ¥ ULX@ model
- Diffuse model components:
 galactic absorption ★
 collisionally-ionized diffuse gas



ULX1 model test cases:

- Powerlaw: Frequent first step in ULX analysis.
- 2 multicolor black-body disks: Approximates disk+corona
- Multicolor black-body disks with power-law dependence for disk temperature T(r):
 Description of "Broad" 1 component continuum spectra

All statistically viable. We need XMM to choose!

11

Contents | Following the Thread

Questions

- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

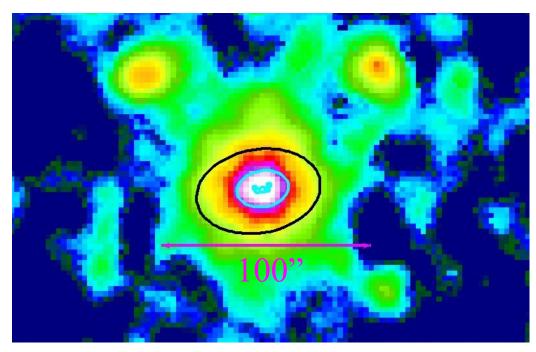
Chandra

- Resolves ULX population
- Provides info on individual ULX+ local background
- Allows variability studies between observations

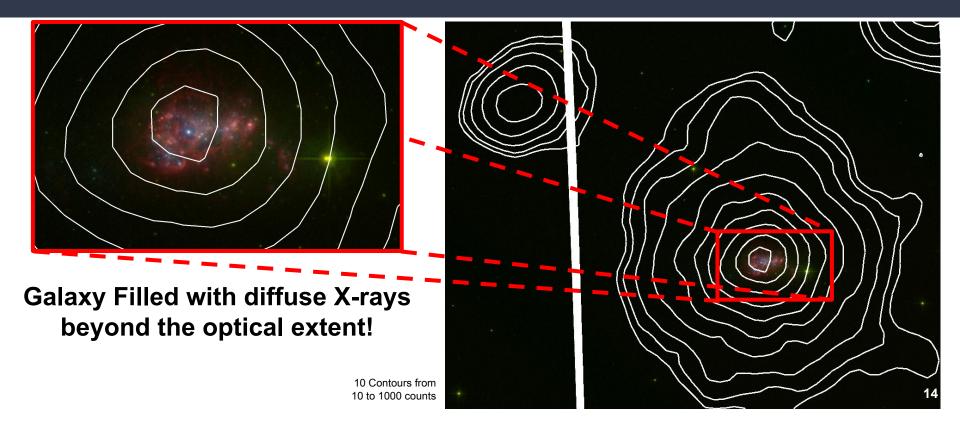
XMM-Newton

- Supplements Chandra in soft X-rays
- Detects galactic halo emission

Answers


- ULX are producing significant amounts of HeII ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

XMM-Newton | Imaging of ESO 338-4

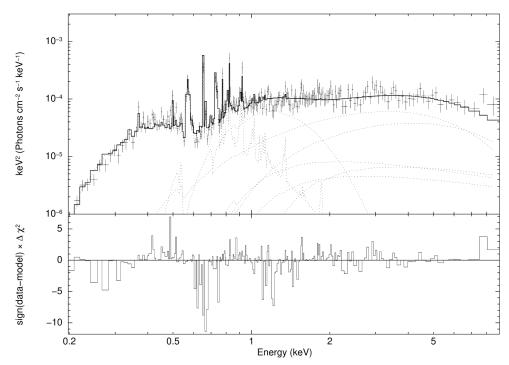

General

- Image: EPIC cameras PN, MOS1, MOS2 merged and background corrected
- ➤ Lower mirror resolution than
 Chandra → 5 ULX became blended
- For ESO 338-4 XMM-Newton:
 - Supplements Chandra below 1 keV
 - ➤ Detects galactic Halo! $L_{\chi} \approx 8.6 \cdot 10^{40} \text{ erg} \cdot \text{s}^{-1}$ and <kT> $\approx 2.5 \text{ keV}$

XMM-Newton | Spectral Analysis Below 1keV

Chandra Modelling

+


XMM info below 1 keV

+

XMM info on galactic halo

=

Construct a complex X-ray model of the galaxy

Contents | Following the Thread

Questions

- What are the ionizing sources in galaxies?
- How important are Ultraluminous X-ray sources (ULX) in the photon production and transfer?
- Why choose ESO 338-4 to test our assumptions?

Chandra

- Resolves ULX population
- Provides info on individual ULX+ local background
- Allows variability studies between observations

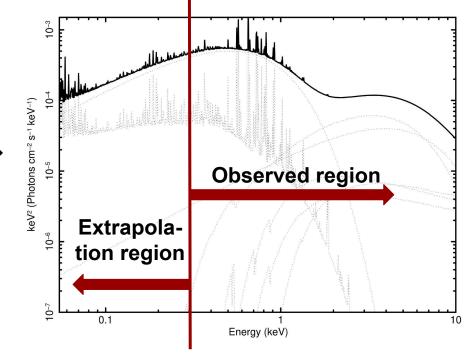
XMM-Newton

- Supplements Chandra in soft X-rays
- Detects galactic halo emission

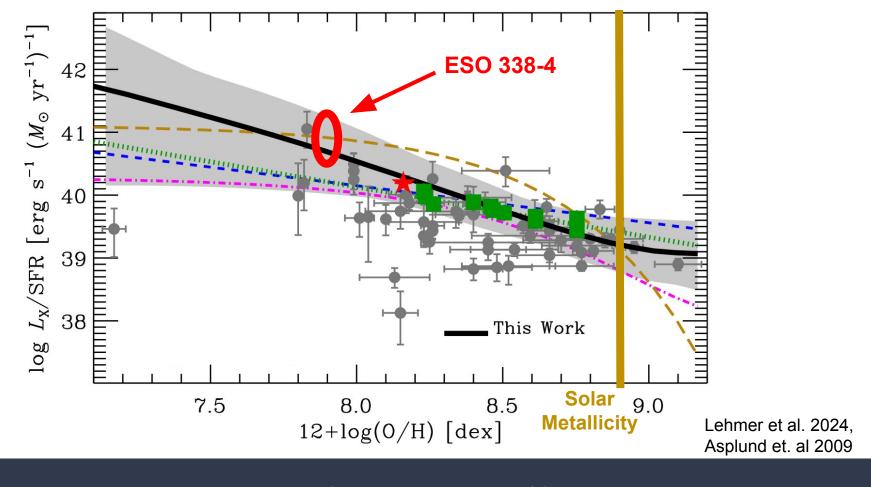
Answers

- ULX are producing significant amounts of Hell ionizing photons.
- ESO 338-4 shows how low-metallicity starburst galaxies, proxies of high-redshift Lyman emitters, can feature luminous X-ray sources that cannot be ignored.

Removing Galactic (and intrinsic) absorption we can estimate:


$$L_X^{0.054-0.25\text{keV}} \approx 0.24 (1.1) \cdot 10^{41} \text{ erg} \cdot \text{s}^{-1} \implies$$

Number of ionizing photons 3.2 (16)· 10^{50} ph·s⁻¹

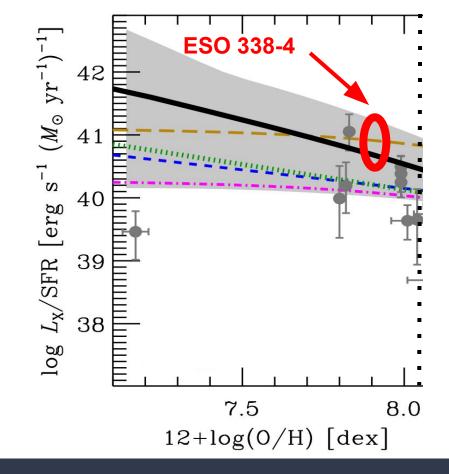

Back-of-the-envelope estimate L_{HeII}=1.1 (5.4)·10³⁹ erg·s⁻¹

*

$$L_{HeII}^{obs}$$
 ≈ 2·10³⁹ erg·s⁻¹.
Combined broad+narrow HeII 4686 emission from MUSE data.

Extrapolating our model to lower energies produces photons capable of ionizing Hell in the galaxy!

X-rays in Low-Metallicity Galaxies | L_x/SFR vs. Metallicity 18


Generally:

X-ray contents in low-metallicity galaxies higher than initially thought

For ESO 338-4:

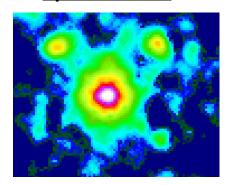
- **♦** L_{χ} /SFR≈(0.5-3.3)·10⁴¹ erg·s⁻¹/M_☉·yr⁻¹. Above average!
- Values possibly are higher since ULX1 is variable.

ESO 338-4: shows how low-metallicity galaxies can feature luminous X-ray sources contributing significantly to the radiative content of the galaxy

Estimate of Hell ionizing photons

- Number of photons between (3.2-16)·10⁵⁰ ph·s⁻¹
- Expected luminosity

 L_{HeII} = (1.1-5.4)·10³⁹ erg·s⁻¹.


 Comparable to observations.

ULX variability can lead to an even higher X-ray contribution

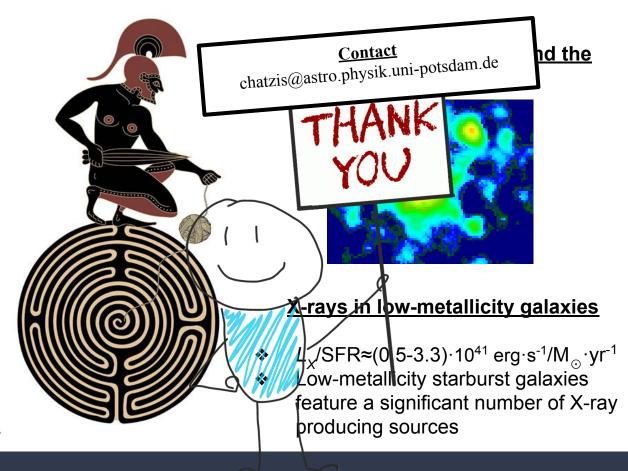
ULX1 Chandra light curve

Galaxy filled with X-rays beyond the optical extent

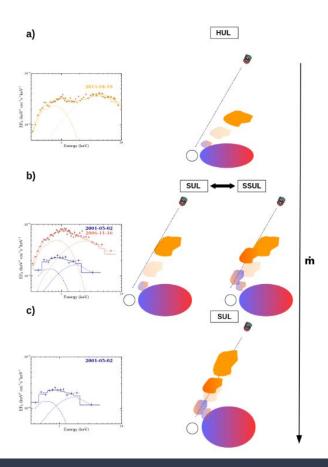
X-rays in low-metallicity galaxies

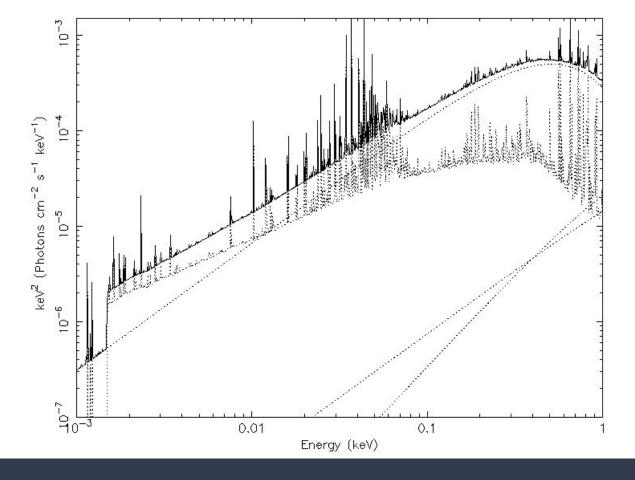
- **♦** $L_{\chi}/SFR \approx (0.5-3.3) \cdot 10^{41} \text{ erg} \cdot \text{s}^{-1}/\text{M}_{\odot} \cdot \text{yr}^{-1}$
- Low-metallicity starburst galaxies feature a significant number of X-ray producing sources

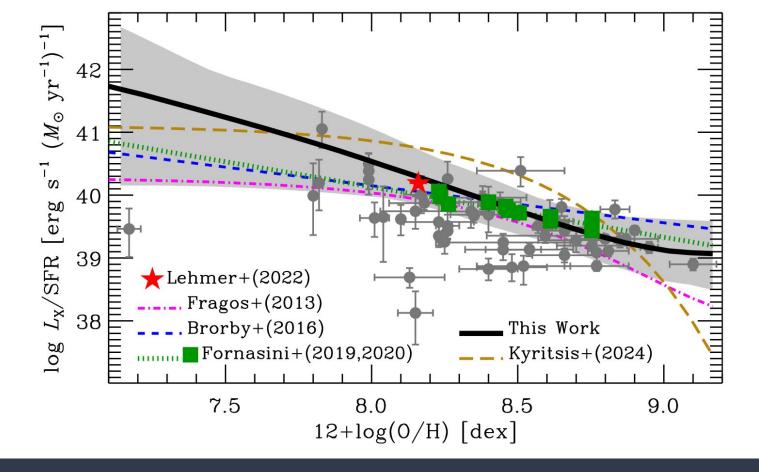
Estimate of Hell ionizing photons

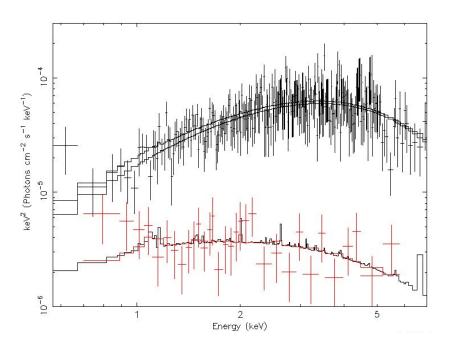

- Number of photons between (3.2-16)·10⁵⁰ ph·s⁻¹
- Expected luminosity

 L_{Hell} = (1.1-5.4)·10³⁹ erg·s⁻¹.

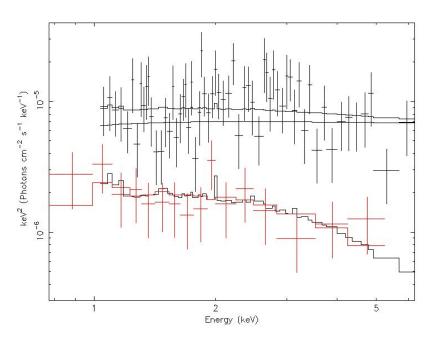

 Comparable to observations.


ULX variability can lead to an even higher X-ray contribution


ULX1 Chandra light curve



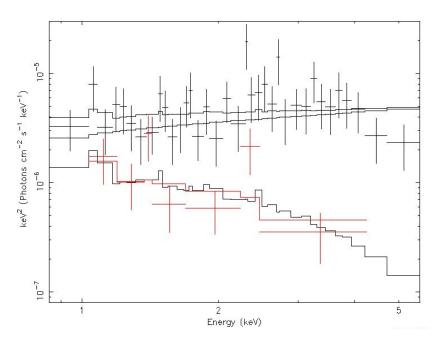
Backup Slides




```
Model TBabs<1>*diskpbb<2> Source No.: 1
                                         Active/On
Model Model Component Parameter Unit
                                          Value
 par comp
                          Data group: 1
                                 10^22
           TBabs
                                          5.00000E-02 frozen
           diskpbb
                      Tin
                                          1.28402
                                                       +/- 9.72267E-02
                                          1.00000
           diskpbb
                                                       +/- 0.364494
           diskpbb
                      norm
                                          5.66168E-03 +/- 3.51983E-03
                          Data group: 2
           TBabs
                      nH
                                 10^22
                                          5.00000E-02 = p1
           diskpbb
                      Tin
                                          1.28402
                                                       = p2
                                          1.00000
           diskpbb
                                                       = p3
           diskpbb
                      norm
                                          0.0
                                                       frozen
```

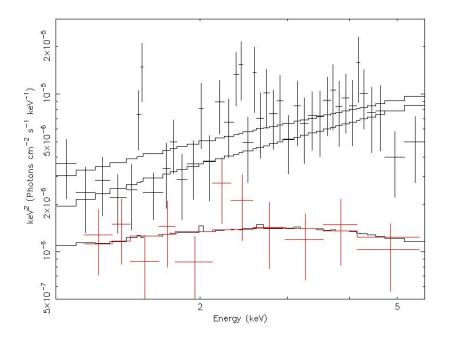
```
Model myback:TBabs<1>*apec<2> Source No.: 2
Model Model Component Parameter Unit
 par comp
                          Data group: 1
           TBabs
                      nH
                                 10^22
                                         5.00000E-02 = p1
                      kT
                                          2.52922
                                                       +/- 0.401414
           apec
           apec
                      Abundanc
                                          0.120000
                                                      frozen
       2
                      Redshift
                                         0.0
                                                       frozen
           apec
           apec
                      norm
                                          1.41967E-05 +/- 1.59500E-06
                          Data group: 2
           TBabs
                                 10^22
                                         5.00000E-02 = myback:p1
                      kT
           apec
                                 keV
                                         2.52922
                                                       = myback:p2
           apec
                      Abundanc
                                          0.120000
                                                       = myback:p3
                                                       = myback:p4
           apec
                      Redshift
                                         0.0
                                          1.41967E-05 = myback:p5
```

```
Fit statistic : C-Statistic 193.45 using 239 bins, spectrum 1, group 1.
C-Statistic 26.12 using 32 bins, spectrum 2, group 2.
Total fit statistic 219.57 with 266 d.o.f.
```


Test statistic : Chi-Squared 229.44 using 271 bins. Null hypothesis probability of 9.49e-01 with 266 degrees of freedom

		<1>*powerla				ive/0	n
		Component	Parameter	Unit	Value		
par	comp						
			Data	group: 1			
1	1	TBabs	nH	10^22	5.00000E-02	froz	en
2	2	powerlaw	PhoIndex		2.03657	+/-	0.158821
3	2	powerlaw	norm		7.33562E-06	+/-	1.07441E-06
4	3	TBabs	nH	10^22	0.0	froz	en
			Data	group: 2			
5	1	TBabs	nH	10^22	5.00000E-02	= p1	
6	2	powerlaw	PhoIndex		2.03657	= p2	
7	2	powerlaw	norm		0.0	froz	en
8	3	TBabs	nH	10^22	0.0	= p4	
						5000	

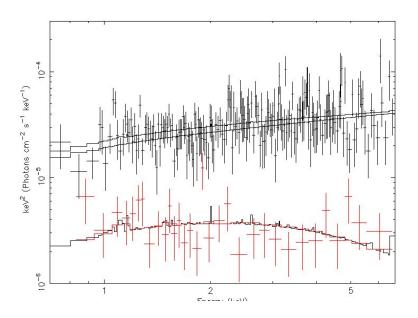
Model	Model	Component	Parameter	Unit	Value		
par	COMD						
Par	-ср		Data o	group: 1			
1	1	TBabs	nH .	10^22	5.00000E-02	= p1	
2	2	apec	kT	keV	1.91041	+/- 0.339159	
3	2	apec	Abundanc		0.120000	frozen	
4	2	apec	Redshift		0.0	frozen	
5	2	apec	norm		8.17166E-06	+/- 1.22987E-06	
		34	Data o	group: 2			
6	1	TBabs	nH	10^22	5.00000E-02	= myback:p1	
7	2	apec	kT	keV	1.91041	= myback:p2	
8	2	apec	Abundanc		0.120000	= myback:p3	
9	2	apec	Redshift		0.0	= myback:p4	
10	2	apec	norm		8.17166E-06	= myback:p5	


ULX3 Chandra spectrum


```
Model TBabs<1>*powerlaw<2>*TBabs<3> Source No.: 1
                                                    Active/On
Model Model Component Parameter Unit
                                           Value
 par comp
                           Data group: 1
                       nH
                                  10^22
            TBabs
                                           5.00000E-02 frozen
            powerlaw
                       PhoIndex
                                           1.72779
                                                        +/- 0.230439
            powerlaw
                                           3.04065E-06
                                                       +/- 6.71144E-07
                       norm
        3
            TBabs
                       nH
                                  10^22
                                           0.0
                                                        frozen
                          Data group: 2
                                  10^22
            TBabs
                                           5.00000E-02
                                                       = p1
            powerlaw
                       PhoIndex
                                           1.72779
                                                        = p2
            powerlaw
                       norm
                                           0.0
                                                        frozen
            TBabs
                       nH
                                  10^22
                                          0.0
                                                        = p4
```

Model myback:TBabs<1>*apec<2> Source No.: 2 Active/On Model Model Component Parameter Unit par comp Data group: 1 TBabs 10^22 5.00000E-02 = p1keV apec 1.33643 +/- 0.325570 apec Abundanc 0.120000 frozen 2 Redshift frozen apec 0.0 4.75582E-06 +/- 1.11367E-06 apec norm Data group: 2 TBabs nH 10^22 5.00000E-02 = myback:pl = myback:p2 apec kT keV 1.33643 2 apec Abundanc 0.120000 = myback:p3 2 apec Redshift 0.0 = myback:p4 2 10 apec norm 4.75582E-06 = myback:p5

ULX4 Chandra spectrum

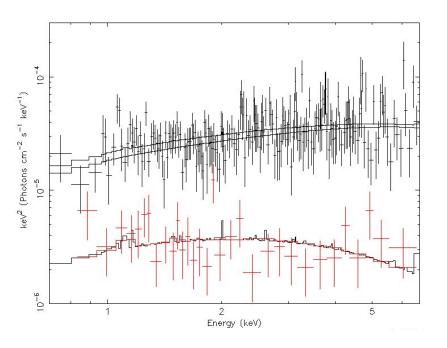



```
Model TBabs<1>*powerlaw<2>*TBabs<3> Source No.: 1 Active/On
Model Model Component Parameter Unit
 par comp
                          Data group: 1
                                10^22
                                         5.00000E-02 frozen
           TBabs
                      PhoIndex
                                         1.15369
                                                      +/- 0.237002
           powerlaw
           powerlaw
                      norm
                                         2.04111E-06
                                                     +/- 5.24608E-07
           TBabs
                      nH
                                10^22
                                         0.0
                                                      frozen
                         Data group: 2
           TBabs
                                10^22
                                         5.00000E-02
                                                     = p1
                      PhoIndex
                                                      = p2
           powerlaw
                                         1.15369
                                                      frozen
           powerlaw
                      norm
                                         0.0
                                10^22
           TBabs
                                         0.0
                                                      = p4
```

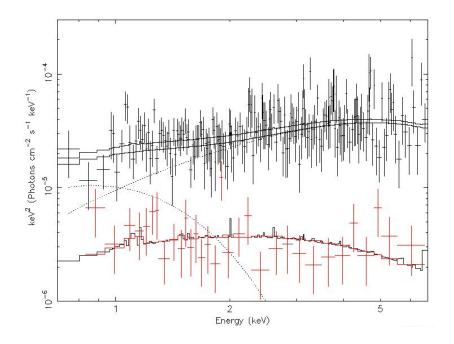
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data g	roup: 1			
1	1	TBabs	nH	10^22	5.00000E-02	= p1	
2	2	apec	kT	keV	4.05982	+/-	2.14117
3	2	apec	Abundanc		0.120000	froz	en
4	2	apec	Redshift	Redshift		froz	en
4 5	2	apec	norm		4.34244E-06	+/-	9.45251E-07
			Data g	roup: 2			
6	1	TBabs	nH	10^22	5.00000E-02	= my	back:p1
7	2	apec	kT	keV	4.05982	= my	back:p2
8	2	apec	Abundanc		0.120000	= my	back:p3
9	2	apec	Redshift		0.0	= my	back:p4
10	2	apec	norm		4.34244E-06	= my	back:p5

```
Fit statistic : C-Statistic 46.83 using 40 bins, spectrum 1, group 1. C-Statistic 5.26 using 11 bins, spectrum 2, group 2. Total fit statistic 52.09 with 47 d.o.f.
```

Test statistic : Chi-Squared 49.77 using 51 bins. Null hypothesis probability of 3.64e-01 with 47 degrees of freedom



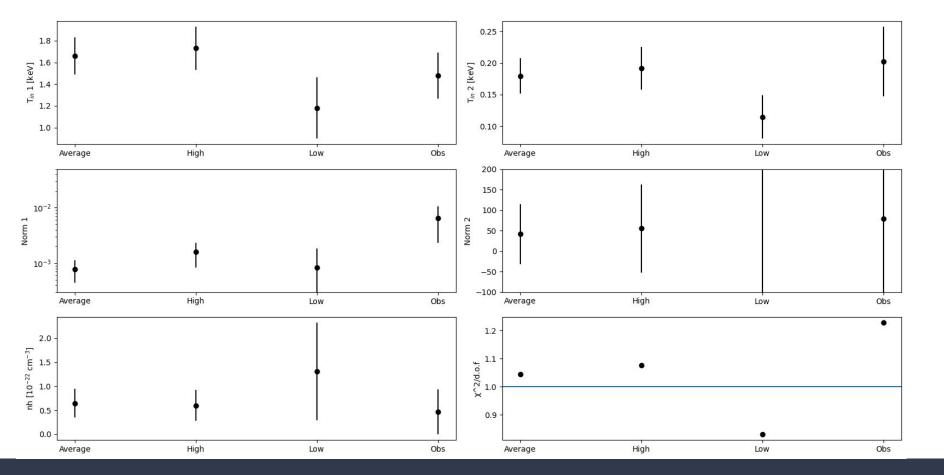
Model	TBabs-	<1>*powerla	w<2> Source	No.: 1	Active/On		
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data o	group: 1			
1	1	TBabs	nH	10^22	5.00000E-02	froz	en
2	2	powerlaw	PhoIndex		1.66833	+/-	6.26511E-02
3	2	powerlaw	norm		2.17151E-05	+/-	1.37364E-06
			Data	group: 2			
4	1	TBabs	nH	10^22	5.00000E-02	= p1	
5	2	powerlaw	PhoIndex		1.66833	= p2	
6	2	powerlaw	norm		0.0	froz	en

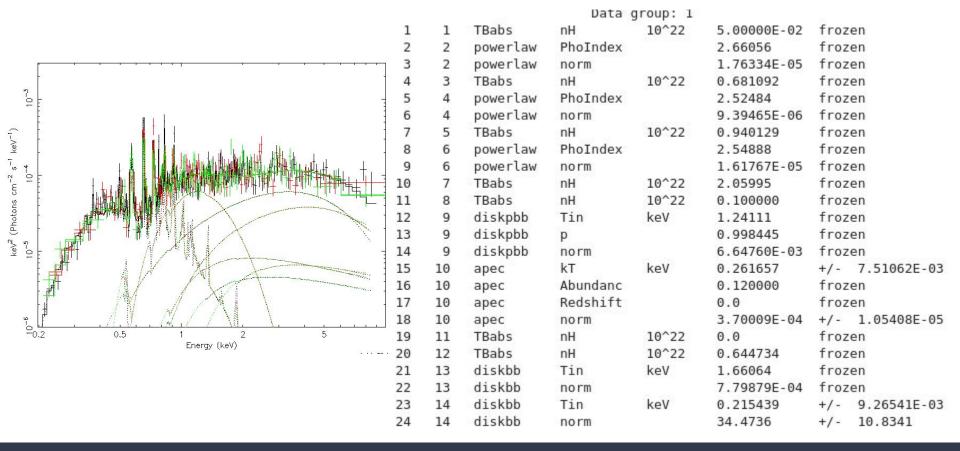

					2 Active/On		
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data	group: 1			
1	1	TBabs	nH	10^22	5.00000E-02	= p1	
2	2	apec	kT	keV	2.99857	+/- 0.497500	
3	2	apec	Abundanc		0.120000	frozen	
4	2	apec	Redshift		0.0	frozen	
5	2	apec	norm		1.31291E-05	+/- 1.44064E-06	
			Data	group: 2			
6	1	TBabs	nH	10^22	5.00000E-02	= myback:p1	
7	2	apec	kT	keV	2.99857	= myback:p2	
8	2	apec	Abundanc		0.120000	= myback:p3	
9	2	apec	Redshift		0.0	= myback:p4	
10	2	apec	norm		1.31291E-05	= myback:p5	

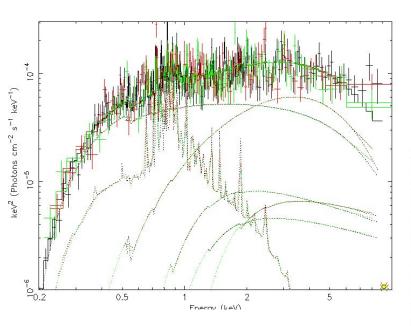
Fit statistic : C-Statistic 196.07 using 182 bins, spectrum 1, group 1.
C-Statistic 34.01 using 32 bins, spectrum 2, group 2.
Total fit statistic 230.07 with 210 d.o.f.

Test statistic : Chi-Squared 224.18 using 214 bins. Null hypothesis probability of 2.39e-01 with 210 degrees of freedom

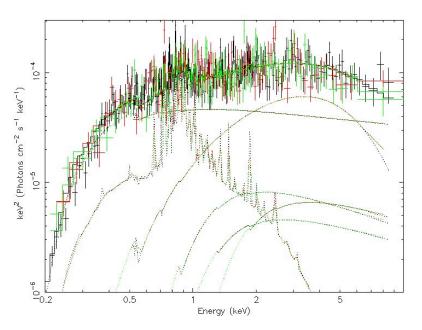

```
______
Model TBabs<1>*diskpbb<2> Source No.: 1
                                       Active/On
Model Model Component Parameter Unit
                                        Value
 par comp
                         Data group: 1
           TBabs
                                10^22
                                        5.00000E-02
                                                   frozen
           diskpbb
                     Tin
                                        3.30124
                                                    +/- 1.55065
           diskpbb
                                        0.563637
                                                    +/- 2.38282E-02
           diskpbb
                     norm
                                        2.06336E-05 +/- 4.11967E-05
                         Data group: 2
           TBabs
                                10^22
                                        5.00000E-02
           diskpbb
                     Tin
                                        3.30124
                                                    = p2
           diskpbb
                                        0.563637
                                                    = p3
           diskpbb
                     norm
                                        0.0
                                                    frozen
Model myback:TBabs<1>*apec<2> Source No.: 2
                                           Active/On
Model Model Component Parameter Unit
 par comp
                         Data group: 1
                                10^22
                                        5.00000E-02 = p1
                     kT
                                        2.98110
                                                    +/- 0.492712
                                        0.120000
           apec
                     Abundanc
                                                    frozen
                     Redshift
                                        0.0
                                                    frozen
           apec
                                        1.31558E-05 +/- 1.44457E-06
                     norm
                         Data group: 2
                                10^22
           TBabs
                                        5.00000E-02 = myback:p1
                     kT
                                        2.98110
                                                    = myback:p2
                     Abundanc
                                        0.120000
                                                    = myback:p3
                                                    = myback:p4
           apec
                     Redshift
                                        1.31558E-05 = myback:p5
                     norm
Fit statistic : C-Statistic
                                           195.98
                                                     using 182 bins, spectrum 1, group 1.
                C-Statistic
                                            34.01
                                                     using 32 bins, spectrum 2, group 2.
Total fit statistic
                                                     with 209 d.o.f.
                                           229.99
Test statistic : Chi-Squared
                                           222.03
                                                     using 214 bins.
 Null hypothesis probability of 2.56e-01 with 209 degrees of freedom
```




Model	TBabs-	<1>(diskbb<	2> + diskbb	<3>) Sour	ce No.: 1 A	ctive,	/0n
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data g	roup: 1			
1	1	TBabs	nH	10^22	5.00000E-02	froz	en
2	2	diskbb	Tin	keV	2.00739	+/-	0.266872
3	2	diskbb	norm		3.42342E-04	+/-	1.71452E-04
4	3	diskbb	Tin	keV	0.305195	+/-	9.38588E-02
5	3	diskbb	norm		0.220499	+/-	0.209532
			Data g	roup: 2			
6	1	TBabs	nH	10^22	5.00000E-02	= p1	
7	2	diskbb	Tin	keV	2.00739	= p2	
8	2	diskbb	norm		0.0	froz	en
9	3	diskbb	Tin	keV	0.305195	= p4	
10	3	diskbb	norm		0.0	froz	en


Model	mybac	k:TBabs<1>*	apec<2> Sou	irce No.:	2 Active/On		
Model	Model	Component	Parameter	Unit	Value		
par	comp						
			Data	group: 1			
1	1	TBabs	nH	10^22	5.00000E-02	= p1	
2	2	apec	kT	keV	2.99152	+/- 0.496177	
3	2	apec	Abundanc		0.120000	frozen	
4	2	apec	Redshift		0.0	frozen	
5	2	apec	norm		1.31449E-05	+/- 1.44280E-06	
			Data	group: 2			
6	1	TBabs	nH	10^22	5.00000E-02	= myback:p1	
7	2	apec	kT	keV	2.99152	= myback:p2	
8	2	apec	Abundanc		0.120000	= myback:p3	
9	2	apec	Redshift		0.0	= myback:p4	
10	2	apec	norm		1.31449E-05	= myback:p5	
						8 5	

Fit statistic : C-Statistic	192.89	using 182 bins, spectrum 1, group 1.
C-Statistic	34.01	using 32 bins, spectrum 2, group 2.
Total fit statistic	226.89	with 208 d.o.f.


Test statistic : Chi-Squared 216.81 using 214 bins. Null hypothesis probability of 3.23e-01 with 208 degrees of freedom

1	1	TBabs	nH	10^22	5.00000E-02	frozen
2	2	powerlaw	PhoIndex	10 22	2.66056	frozen
3	2	powerlaw	norm		1.76334E-05	
4	3	TBabs	nH	10^22	0.681092	frozen
5	4	powerlaw	PhoIndex	550	2.52484	frozen
6	4	powerlaw	norm		9.39465E-06	
7	5	TBabs	nH	10^22	0.940129	frozen
8	6	powerlaw	PhoIndex		2.54888	frozen
9	6	powerlaw	norm		1.61767E-05	frozen
10	7	TBabs	nH	10^22	2.05995	frozen
11	8	TBabs	nH	10^22	0.100000	frozen
12	9	diskpbb	Tin	keV	1.24111	frozen
13	9	diskpbb	р		0.998445	frozen
14	9	diskpbb	norm		6.64760E-03	frozen
15	10	apec	kT	keV	0.657269	+/- 3.85747E-02
16	10	apec	Abundanc		0.120000	frozen
17	10	apec	Redshift		0.0	frozen
18	10	apec	norm		9.48959E-05	+/- 8.56775E-06
19	11	TBabs	nH	10^22	0.0	frozen
20	12	TBabs	nH	10^22	0.0	frozen
21	13	diskpbb	Tin	keV	1.58017	+/- 0.229900
р			0.500000	+/-	1.65486E-02	
23	13	diskpbb	norm		3.30790E-04	+/- 2.27963E-04

1	1	TBabs	nH	10^22	5.00000E-02	froz	en
2	2	powerlaw	PhoIndex		2.66056	froz	
<i>i</i> erla		norm		76334E-05			Testis
4	3	TBabs	nH	10^22	0.681092	froz	en
5	4	powerlaw	PhoIndex		2.52484	froz	en
6	4	powerlaw	norm		9.39465E-06	froz	en
7	5	TBabs	nH	10^22	0.940129	froz	en
8	6	powerlaw	PhoIndex		2.54888	froz	en
9	6	powerlaw	norm		1.61767E-05	froz	en
10	7	TBabs	nH	10^22	2.05995	frozen	
11	8	TBabs	nH	10^22	0.100000	frozen	
12	9	diskpbb	Tin	keV	1.24111	frozen	
13	9	diskpbb	Р		0.998445	froz	en
14	9	diskpbb	norm		6.64760E-03	froz	en
15	10	apec	kT	keV	0.734476	+/-	3.46371E-02
16	10	apec	Abundanc		0.120000	froz	en
17	10	apec	Redshift		0.0	froz	en
18	10	apec	norm		9.50966E-05	+/-	8.20752E-06
19	11	TBabs	nH	10^22	0.0	froz	en
20	12	TBabs	nH	10^22	8.87545E-06	froz	en
21	13	powerlaw	PhoIndex		2.20118	+/-	3.82283E-02
22	13	powerlaw	norm		5.20183E-05	+/-	2.16700E-06