

The UV-Slopes of the Faintest, High-Redshift Galaxies with GLIMPSE

Michelle Jecmen, John Chisholm, Vasily Kokorev, and the GLIMPSE team

1st year graduate student University of Texas at Austin

JWST → early galaxies efficiently produce ionizing photons

Extrapolating trends of bright galaxies to fainter galaxies, reionization models no longer match observations

JWST → early galaxies efficiently produce ionizing photons

Extrapolating trends of bright galaxies to fainter galaxies, reionization models no longer match observations

One possible solution:

f_{esc} is overestimated

Important to understand f_{esc} from faint galaxies

Direct observation impossible at $z \ge 5$ due to IGM absorption

Important to understand f_{esc} from faint galaxies

Direct observation impossible at $z \ge 5$ due to IGM absorption

Indirect tracers: Ly α v_{sep}, O₃₂, H β EW, UV continuum slope

Flury et al. 2022

Important to understand f_{esc} from **faint galaxies**

Direct observation impossible at $z \ge 5$ due to IGM absorption

Indirect tracers: Ly α v_{sep}, O₃₂, H β EW, UV continuum slope

Empirical relation from LzLCS

but consistent with f_{esc} from Mg II at z>7 (Gazagnes et al. 2024)

Chisholm et al. 2022

UV-continuum slopes

UV-continuum slopes

Gravitational lensing + ultra-deep imaging

7 Crete 2025, Jecmen

Strong gravitational lensing & ultra-deep imaging

→ probe the faintest galaxies

120 hours across 9 NIRCam filters: F090W, F115W, F150W, F200W, F277W, F356W, **F410M**, F444W, **F480M**

Obtain β from power-law fitting

In UV, $F_{\lambda} \propto \lambda^{\beta}$

- Photometry
 1350Å ≤ λ ≤ 3400Å
- 2. Bagpipes SED
 1350Å ≤ λ ≤ 1800Å

Beta decreases with redshift

Cullen et al. 2023

Austin et al. 2024

Beta stops decreasing towards fainter galaxies

SPHINX Simulation - Katz et al. 2023

z~6 subset, Hα equivalent widths

Zackrisson et al. 2013

z~6 subset, Hα equivalent widths

Zackrisson et al. 2013

z~6 subset, Hα equivalent widths

~ 10 galaxies with β < -3.0

SEDs not able to reproduce these very blue slopes

~ 10 galaxies with β < -3.0

SEDs not able to reproduce these very blue slopes

Bagpipes implementation allowing f_{esc} to vary

- Picket fence model for LyC escape
- Emma Giovinazzo talk Thursday

f_{esc} - M_{UV} relation

f_{esc} - M_{UV} relation

Muñoz et al. 2024

Key takeaways

- Need to determine f_{esc} from **faint**, high-z galaxies
 - UV-continuum slope (β)
 - Compare photometric and SED power-law fits

- Findings suggest β decreases with redshift β stops decreasing toward faintest galaxies
 - Faint galaxies don't have the highest LyC escape fractions
- Broad results observational bias, scatter, assumptions
- Getting ~40hrs Nirspec G395M spectra in July! (PI: Seiji Fujimoto)
 - Look at additional tracers of $f_{esc, LyC}$