Review of UV/Continuum Attenuation...and The Production and Transmission of Ly α and Implications for the Escape of Ionizing Radiation

Naveen Reddy (University of California, Riverside)

ASTRONOMY

Escape of Lyman Radiation from Galactic Labyrinths, Crete 2025

Outline of the First Part...

What is the stellar attenuation curve?

Why is it important?

What does it depend on?

What about the nebular attenuation curve?

• A "roadmap" of dust curves at high-redshift

Definitions...

$$f(\lambda) = f_0(\lambda) \times 10^{-0.4A(\lambda)}$$

$$k(\lambda) \equiv \frac{A(\lambda)}{E(B-V)}$$

- Note that *E*(*B*-*V*) depends on the shape of the dust curve, *k*
- "Extinction" vs. "Attenuation"

Importance of the Dust "Curve"

Importance of Quantifying the Wavelength-Dependence of Dust Obscuration

• [nebular attenuation curve:] Inferring the Physical Properties of the ISM based on rest-frame optical line ratios (e.g., ionization parameters, gas-phase metallicities, nebular reddening and recombination-line SFRs)

Investigating the origin of the carriers of specific absorption

features in the UV

Investigating the Curve... often accomplished using the IRX-beta relation

Variations in the dust curve - SFH

Must take into account Star-formation history / Age / sSFR

^{**}Important to disentangle variations in stellar populations from changes in the shape of the dust curve

Variations in the curve - Inclination

GEOMETRY

Variations in the curve - metallicity

• (Stellar) Metallicity (also related to SFH, sSFR, mass, etc.)

e.g., see also Wilkins+11, Boquien+12, Schaerer+13, de Barros+14, Zeimann+15

Going beyond IRX-Beta

• Constraints on the overall shape/normalization of the stellar attenuation curve (e.g., Noll+09, Kriek&Conroy13, Scoville+15, Reddy+15, Zeimann+15))

Steepening of Curve at low mass/ low metallicity

The Far-UV Shape of the Dust Curve

• New constraints on the shape of the dust curve close to the Lyman Break

- Most dust curves, including that of Calzetti, have only been constrained above 1250
 Angstroms
- New determination for z~3 LBGs suggests a shallower (less steep) wavelength dependence between 950 and 1250 A

May be used to assess attenuation of ionizing photons in low-column density ISM (<10^17.2 cm^-2) or in HII regions

Importance of the Dust "Curve" for **Modeling Stellar Populations**

see also Reddy+16a,b; Steidel+18, Gazagnes+18, Reddy+22, ...

828, 108)

- Curve that applies for dust reddening along the lines-of-sight to the ionized ISM (i.e., towards massive stars)
- Required to interpret rest-frame optical line ratios to compute ISM physical properties
- A priori there is no reason why the curve should be the same as that affecting the stellar continuum (cov. fraction of dust/geometry), MW extinction curve normally assumed

can be investigated using multiple recombination line ratios

Reddy et al. (2020, ApJ, 902, 123)

From the JWST Cycle 1 "AURORA" program

Sanders+24

A "Roadmap" for the Stellar Attenuation Curve at High Redshift

Part 2... Effects of Stellar Population and Gas Covering Fraction on the Emergent Lya Emission

What processes facilitate the escape of ionizing (Lyman continuum) radiation?

Driven by Star-Formation-Rate Surface Density

Quantifying the mechanism for LyC escape

Difficulties in quantifying f_{esc} at z>2.7:

- signal is weak, particularly for fainter galaxies
- requires stacking to average over line-of-sight opacity variations

POROUS ISM

Zackrisson+13

Lyman-alpha as potential proxy for LyC escape

The MOSFIRE Deep Evolution Field (MOSDEF) Survey

- Rest-frame optical spectra of ~ 1800 H-selected galaxies and AGNs
- 1.37 < z < 3.80
- CANDELS fields
- 48.5 nights with MOSFIRE on Keck I (2012-2016)
- Collaboration between UC Riverside, UC Berkeley, UCLA, UC San Diego

Keck/LRIS Followup (MOSDEF-LRIS Survey)

LRIS followup of MOSDEF galaxies:

- 136 galaxies in final sample
- Complete coverage of Lyman-alpha at least Lyman-beta
- Removed AGN from sample
- Removed blended objects from the sample

Production and Transmission of Ly α in z~2 Galaxies

Production

Model young stellar populations:

- Stellar Metallicities
- Ages
- ContinuumReddening, E(B-V)

Response of ISM

Model Ionized ISM:

Nebular

Reddening, E(B-V)_{neb}

Oxygen

Abundance

Ionization

Parameter

Transmission

Model Neutral ISM:

- Line-of-sightReddening, E(B-V)_{los}
- Column density
- Covering fraction

BPASS v2.2.1 models (Eldridge+17): includes the effects of stellar binarity; consider a range of ages and stellar metallicities

Properties of the Massive Stellar Populations

Properties of the Massive Stellar Populations

- No significant correlation between Z* and W(Lya)
- Only marginal anticorrelation
 between age and W(Lya)

No significant change in hardness of ionizing spectrum

Variations in W within our sample are not driven by changes in stellar population

Properties of the Neutral ISM – Two-component modeling

$$m_{\text{final}} = f_{\text{cov}}(\text{H I}) \times m_{\text{H I}} \times 10^{-0.4E(B-V)_{\text{los}}k(\lambda)} + [1 - f_{\text{cov}}(\text{H I})] \times m_0.$$

Properties of the Neutral ISM – Two-component modeling

Properties of the Neutral ISM – Two-component modeling

What Influences Covering Fraction?

OUTFLOWS ———— POROUS ISM

Ionization-bounded nebula with holes

Zackrisson+13

IS THERE A RELATIONSHIP BETWEEN Ly-alpha ESCAPE AND STAR-FORMATION-RATE SURFACE DENSITY?

$$\Sigma_{\rm SFR} = rac{{
m SFR}}{2\pi R^2}$$

Ly-alpha Escape vs. Star-formation-rate surface density

NO STRONG CORRELATION WITH SIGMA_SFR (at least over the dynamic range probed by our sample)

DOES ESCAPE FRACTION DEPEND ON SOMETHING ELSE AS WELL?

Escape Fraction and Gravitational Potential

Stellar masses strongly correlate with dynamical masses

$$\Sigma_{\rm sSFR} = \frac{\Sigma_{\rm SFR}}{M_*}$$

RESULTS SUGGEST GRAVITATIONAL POTENTIAL MAY BE IMPORTANT FOR Lya ESCAPE

Importance of Gravitational Potential – Comparison with LAEs at similar redshifts

Pucha+22 (AJ, 164, 159)

LAEs have similar Sigma_SFR, but much higher fesc(Lya), by definition. The key difference is the LAEs are ~10x less massive.

Importance of Gravitational Potential – Keck/KCWI Observations

Down-the-barrel Lya fraction much larger in galaxies with high Sigma_sSFR

Keck/KCWI Observations – Morphology of Lya and LyC Escape

Varying column density distribution towards continuum

Main "Takeaways" from Part 2...

- Even typical z~2 galaxies are "metal-poor" (~10% solar stellar metallicities); difficult to produce even more ionizing photons per unit SFR by going to metal-poorer or younger stellar populations
- Gas covering fraction is the primary factor in modulating W(Lya) within our sample
- Covering fraction appears to depend on more than just compactness of star formation. Gravitational potential may be an important factor.

Thank you!

Backup Slides

Variations in the curve - Luminosity

• Luminosity (or total SFR)

Variations in the curve - metallicity

• (Stellar) Metallicity (also related to SFH, sSFR, mass, etc.)

SMC applies best for high-z sub-solar metallicity stellar populations with blue intrinsic UV slopes

Differential Reddening between Lines and Continuum

A "Roadmap" for the Stellar Attenuation Curve at High Redshift

Are star-forming galaxies responsible for reionization?

•Is there a sufficient number of galaxies? YES

•Are enough ionizing photons produced? YES

•Does a sufficient fraction of those photons escape? MAYBE...

Properties of the Massive Stellar Populations

- No significant correlation between Z* and W
- Only marginal anticorrelation
 between age and W
- Significant anticorrelation between continuum reddening and W

Variations in W within our sample are not driven by changes in stellar population

Does Covering Fraction Play a Role in Lya Escape? YES

Fundamental Connection between ionizing escape fraction and HI gas covering fraction, W(Lya)

Does Covering Fraction Play a Role in Lya Escape? YES

Properties of the Ionized ISM - CLOUDY Photoionization Modeling

No significant difference in nebular metallicity (oxygen abundance) between galaxies with lower and upper third of W(Lya) distribution

Properties of the Ionized ISM - CLOUDY Photoionization Modeling

Constraints on Stellar Binarity

Single Stars

Very little stellar He II

↓ High residual nebular He II ┃

Inconsistent

with predictions of CLOUDY modeling

Binary Stars

₩ High stellar He II

Low residual nebular He II

Consistent

with predictions of CLOUDY modeling

Only binary models are able to selfconsistently model the stellar and nebular Hell 1640 emission, independent of W(Lya)

Constraints on Stellar Binarity

Single Stars

Very little stellar He II

↓ High residual nebular He II

Inconsistent

with predictions of CLOUDY modeling

Binary Stars

↓ High stellar He II

Low residual nebular He II

Consistent

with predictions of CLOUDY modeling

Only binary models are able to selfconsistently model the stellar and nebular HeII 1640 emission, independent of W(Lya)