Lyman Continuum Escape at Cosmic Noon

— From Typical Galaxies* to Extreme Starbursts —

Rui Marques-Chaves

University of Geneva - Switzerland

Low-z Lyman Continuum emitters (LzLCS) – main lessons (I)

Indirect LyC indicators established at low-z

- ✓ Lyman-alpha emission
 Verhamme+ 2015, Djikstra & Gronke 2016, Izotov+ 2018, 2021
- ✓ UV absorption lines

 Heckman+ 2011, Steidel+2018, Mauerhofer+ 2021

 Gazagnes+ 2018, Chisholm+ 2018, Saldana-Lopez+ 2022
- ✓ High CIV/CIII] ratio

 Schaerer+2022
 - ✓ Blue UV slope: Chisholm+2022
- ✓ Mg II

 Henry+2018, Chisholm+2020, Xu+2022
- ✓ [SII] deficit
 Wang+ 2019, 2021; Ramambason +2020
- ✓ Hel lines Izotov+ 2017, Guseva+ 2020
- ✓ High [OIII]/[OII] ratio

 Jaskot & Oey 2013, Nakajima+ 2014, Izotov+ 2018, Flury+ 2022
- ✓ [OI] ? Plat+ 2019, Ramambason +2020, Flury+ 2022
- Multivariate prediction for fesc (Jaskot+2024ab, Mascia+2023,2024)
- Outflows (Amorin+2024)

LyC22 JWST survey: LCE 2.2 Gyr after the Big Bang (PI: D. Schaerer *)

- The last frontier to test indirect LyC indicators
- Deep NIRSpec medium-res program: 73.5h total
 18 hours on source (~ 9h with G140M and ~9h with G235M)
- Extensive ancillary data:
 Ground-based + HST, Spitzer, JWST photometry
 HST LyC imaging
 - Deep Keck LRIS spectroscopy (rest-UV)
- Medium-res spectroscopy of known z~3 LyC emitters + non-emitters
- Full spectral coverage from MgII 2800 to [SII] (~6700 Ang) + rest-UV coverage from Keck spectroscopy
- Primary targets from :

Keck Lyman Continuum Survey – KLCS (Steidel+2018, Pahl+)

HST z~3 leakers – LACES (Robertson+, Fletcher+2019) - 12 LCE

New deep Keck spectroscopy

-> careful reanalysis of LyC candidates + searches for new sources

^{*} many other Co-ls (some here: Mascia, Reddy, Pentericci, Verhamme, Vanzella, Kerutt, Flury, Oestlin, RMC, etc.)

Overview:

- 3 MSA pointings: 2 in SSA22 and 1 in Westphal (see below)
- 18 hours on source (~ 9h with G140M and ~9h with G235M)
- 3-Shutter-Nod dither pattern

LyC22 spectra - some examples:

LyC22 spectra - some examples:

LyC22 spectra - some examples:

Rest-optical dominated by nebular lines and continuum

Evolved stellar population (Balmer break)

Part II - Extremely UV-bright starbursts

UV-Luminous sources are unexpectedly numerous in the EoR

Number UV-faint SFGs
Number UV-faint SFGs

Increases with redshift

But what do we know about UV-bright galaxies?

Harikane +2022

The most UV and Lyα luminous star-forming galaxies known so far

Selected from BOSS/SDSS (9000 deg2)

Marques-Chaves + (in prep.)

New sample of \sim 80 UV-luminous SFGs at z = 2-4

- Selected within the BOSS/SDSS survey as QSOs
- Bright apparent magnitudes R ~ 21 AB (ie, rest-frame UV)
- But no evidence of AGN activity or lensing*

Compact morphologies

Stellar populations: average properties

UV-bright galaxies are Powerful ionizing sources!

Stellar populations: average properties

UV-bright starbursts resembling young and massive star-clusters with VMS

R136 Cluster (30 Dor @LMC):

Stellar Mass = $\sim 0.5 \times 10^5 \,\mathrm{M}_\odot$, Age ~ 1 - 2 Myr

- Known to harbor **Very Massive Stars** (Crowther+16)
- Top-heavy IMF (slope~ -1.9, Schneider+18)
- Strong and broad Hell 1640Å as a key feature of VMS

Important: N=5 VMS in R136 contribute 30% of L_{UV} and ~50% of LyC of the cluster!!!

Strong indications of Very Massive Stars (VMS) in UV-bright sources

Rest-UV spectra show intense HeII 1640 emission:

- EW(HeII) ≥ 3.0 Å (not reproduced by standard models/IMFs)
- VMS are required
- I.e., like R136 cluster and otherVMS-dominated clusters

Upadhyaya, RMC +2024

Signatures of **Very Massive Stars** are ubiquitous in the spectra of UV-bright galaxies:

le, the IMF is different (Mup extended up to >300M_©)

UV-bright starbursts resembling young and massive star-clusters (II)

Another example (M_{IIV}= -23.2; Marques-Chaves + in prep)

Large SFRs but residual dust attenuation

UV-bright galaxies show intense star formation,
But residual dust attenuation...

.... Very different than eg, sub-mm galaxies (HyLIRGs)

Marques-Chaves + (in prep.)

UV-bright galaxies are strong LyC emitters

Detection of Lyman continuum (LyC) emission with high significance

LyC: $\lambda_0 < 912 \text{ Å or} > 13.6 \text{ eV}$

LyC escape fractions of ~ 40% to 90%!

The impact of high fesc(LyC) on the nebular emission

J1316+2614 is a very young starburst (~6Myr with CSFH) but shows very weak nebular emission — still the only confirmed LyC leaker where the effect of fesc(LyC) on nebular emission is detected —

"weak" rest-frame optical lines:

- EW_0 (H β 4826Å) = 28 ± 8 Å
- EW_0 ([OIII 5008Å]) = 144 ± 21 Å

...i.e., weaker by a factor ≈ 1/[1-fesc(LyC)]
Consistent with our estimates > fesc(LyC) ~ 80%!

Lyman-alpha profiles of UV-bright strong LyC emitters

J1316+2614: z = 3.613 $M_{UV} = -24.70$ $log(Ly\alpha) = 44.1 [erg/s]$ $f_{esc}(Ly\alpha) = 43 \%$ $f_{esc,abs}(LyC) = 89 \%$

 Δv (Lya) ~ 500-700 km/s

 $EW_0(Ly\alpha) = 21 \& 14 Å$

 $[OIII]5008 / [OII]3727 \sim 4 - 5$

J0121+0025: z = 3.244 $M_{UV} = -24.11$ $log(Ly\alpha) = 43.8 [erg/s]$ $f_{esc}(Ly\alpha) = 14 \%$ $f_{esc,abs}(LyC) = 40 %$

Marques-Chaves+22,24b

J1316+2416: the UV-brightest and strongest LyC emitter - HST view

J1316+2614 at z = 3.613:

- $M_{IIV} = -24.65$, SFR = 900 M_{\odot}/yr , E(B-V) ~ 0
- $M_* = 5x10^9 M_{\odot}$; 6 Myr age (CSFH)
- $f_{\rm esc}(LyC) \sim 90\%$
- Resolved LyC emission and with similar size as the non-ionizing emission ($r_{eff} = 220 \text{ pc}$)
- Lyα emission is blueshifted and shows an elongated morphology > massive inflows
- However, Lyα is weak/absent within the stellar emission > exposed stellar core

How is that possible?

J1316+2416: the UV-brightest and strongest LyC emitter

J1316+2416: the UV-brightest and strongest LyC emitter

J1316+2416: Energetics and SF efficiency (ϵ_{SF})

Binding energy: $E_b \propto (1-\epsilon_{SF}) M_{total}^2 / r_{eff}$

Kinetic energy: E_k ∝ SFR

Gas clearance (i.e., $E_k > E_b$) only occurs when $\varepsilon_{SF} > 70\%$ (similar for radiative driven outflows)

Higher ε_{SF} :

-increases SFR -> thus Qion
-increases feedback (rad. & mech.)
-consumes more gas -> less amount of
gas available to absorb LyC radiation

High LyC leakage driven by high SF efficiency?

C5 -> compactness index: KEY PARAMETER

UV-bright galaxies are strong LyC emitters

From Marques-Chaves+2021, 2022, in prep.

And more to come soon...

UV-bright galaxies are strong ionizing sources

Do they contribute significantly to cosmic reionization??

Literature sample:

Stacks (z~2-4): Grazian +2017; Marchi +2017; Rutkowski +2017; Steidel +2018: Fletcher +2019; Bian & Fan 2020; Pahl +2021

From Marques-Chaves+2021, 2022, in prep.

And more to come soon...

UV-bright galaxies are strong ionizing sources

Do they contribute significantly to cosmic reionization??

iterature sample:

acks (z~2-4): Grazian +2017; Marchi +2017; Rutkowski +2017; eidel +2018: Fletcher +2019; Bian & Fan 2020; Pahl +2021

Do extremely UV-bright galaxies also exist at higher redshifts?

Yes, extremely UV-bright galaxies also exist at higher redshifts

Do extremely UV-bright galaxies also exist at higher redshifts? -> yes How do they like?

Summary / Main Properties

- UV-bright galaxies ($M_{_{\rm UV}} \sim$ -23 to -25) are blue / almost unobscured
- Emission dominated by very young stellar populations (~ 5-10 Myr)
- Spectra and M_{*} and SFR surface densities similar to young massive star clusters
 - -> but how is that possible ?
- UV spectra dominated by Very Massive Stars > different IMF, towards top-heavy ?
- Among the strongest Lyman continuum emitting galaxies known -> but why / how ?
- Indications of high SF efficiencies > key for high LyC escape ?
- Short gas depletion timescales > very short-lived phases / how many are we missing ?

Can models of galaxy formation & evolution predict these properties?

* To be investigated in JWST GO4

UV-bright galaxies: ALMA observations of dust and molecular gas

Introduction

- JWST is now discovering a stunning population of UV-bright sources (even up to z~14) (Bunker+23, Castellano+24, Carniani+24, etc.)
- Far more numerous than previously thought (based on models and pre-JWST extrapolations)
- Why? Possible explanations:

Higher SF efficiency? (Dekel+23, Li+24, Ceverino+24, Renzini 24, etc.)

Dust removal? (Ferrara+23, 24, Fiore+23, Ziparo+24)

Top-heavy IMF? (eg, Chon+21, 24, Trinca+23, Rasmussen Cueto+24)

Stochastic SFHs? (eg, Mason+24, Gelli+2024, Mirocha & Furlanetto 2023, Shen+23)

(Roberts-Borsani+2024)

Do they represent a specific phase in galaxy formation/evolution? Why are these sources so bright? Formation/properties/nature?

Introduction

But how well established is the *very* bright-end of the UV-LFs at lower-z?

** area ~40k deg² and $\Delta z = 0.1$

What triggers these powerful starbursts? Diversity of Lyman-alpha profiles

Are UV-bright galaxies triggered by massive gas inflows, gas collapse?

(monolithically?)

Marques-Chaves +2022, 2024b

UV-bright starbursts resembling young and massive star-clusters (II)

Another example (M_{IIV}= -23.2; Marques-Chaves + in prep)

UV-bright galaxies: ALMA observations of dust and molecular gas

Target	z_{nebular}^a	$M_{ m UV}$	$eta_{ m UV}$	$\epsilon_{\mathrm{SF}}^{h}$
				(%)
J1322+0423	2.0800	-23.49	-2.06 ± 0.12	> 31
J0146-0220	2.1595	-23.68	-1.98 ± 0.12	21 ± 3
J1415+2036	2.2435	-23.53	$-3.49 \pm 0.11^{\dagger}$	$> 14 \pm 3$
J1249+1550	2.2928	-23.41	-1.84 ± 0.12	37 ± 5
J0006+2452	2.3796	-24.17	-2.30 ± 0.10	8 ± 0.9
J0850+1549	2.4235	-23.76	-2.62 ± 0.14	> 20
J1220-0051	2.4269	-23.50	-2.43 ± 0.11	13 ± 2
J0950+0523	2.4548	-23.69	-2.41 ± 0.15	9 ± 1
J1220+0842	2.4698	-24.36	-2.36 ± 0.09	> 24
J1157+0113	2.5450	-23.40	-2.15 ± 0.34	15 ± 6
J0121+0025	3.2445	-24.11	-2.19 ± 0.20	$> 29 \pm 10$
J1316+2614	3.6122	-24.65	-2.59 ± 0.05	> 40

On average, UV-bright galaxies show high SF efficiencies (8% to > 40%)

Dessauges-Zavadsky, RMC +2025

UV-bright galaxies: ALMA observations of dust and molecular gas

Dessauges-Zavadsky, RMC +2025