

# A (not so) Complete Unknown:

multiple predictors of Lyman Continuum escape in the early Universe

Sara Mascia, ISTA prize fellow sara.mascia@ista.ac.at

Laura Pentericci, Lorenzo Napolitano, Antonello Calabró, GLASS & CEERS teams

### Reionization timeline



See Yuta & Hiroya's talks!

$$\dot{n}_{ion} = \int \xi_{ion}(M_{UV}) \ \phi_{UV}(M_{UV}) \ f_{esc}(M_{UV}) dM_{UV}$$

The total ionizing emissivity is the number of ionizing photons produced per unit time per unit volume that escape the galaxy

$$\dot{n}_{ion} = \begin{cases} \xi_{ion}(M_{UV}) \; \phi_{UV}(M_{UV}) \; f_{esc}(M_{UV}) dM_{UV} \end{cases}$$



escape fraction of ionizing photons

$$\dot{n}_{ion} = \xi_{ion}(M_{UV}) \phi_{UV}(M_{UV}) f_{esc}(M_{UV}) dM_{UV}$$

ionizing photon production efficiency



ionizing photon production efficiency



6



Thanks to JWST, we are now spectroscopically confirming **hundreds** of galaxies during the EoR



See also ...

Galaxies are very small at z > 5, with a small fraction of mergers.







See
Michelle's
talk!

Evidence for a modest redshift evolution of ξion.



See Mario & Charlotte's talks!



Faint galaxies with bursty SFH seem to have elevated ξion (e.g., Atek+24).

Directly detecting LyC becomes difficult above z > 4 due to IGM attenuation (Inoue+14).

Radiation from cosmic sources is absorbed by neutral hydrogen in the IGM, even after reionization (Gunn & Peterson, 1965).









See also Leitet+11,+13, Borthakur+14, Izotov+16, Leitherer+16; Izotov+18, Wang+19, Izotov+21



See also Mostardi+15, Shapley+16, Vanzella+16,+18, Bassett+19, Fletcher+19, Rivera-Thorsen+19, Ji+20, Saxena+22, Marchi+18, Steidel+18, Bian & Fan 20, Nakajima+20, Yuan+21,24, Citro+24, Liu (in prep.)



#### • Ly $\alpha$ line

At low-to intermediate redshift Lya is the best indirect indicator of LyC emission.

However, at  $z \ge 6$ , Lya is attenuated by the neutral IGM.

600



400

 $V_{sep}$  (km s<sup>-1</sup>)





200

• Ly $\alpha$  line during the EoR



- Detecting a Lyα blue peak indicates the presence of an ionized bubble
- The shape of the peak constrains the size of the bubble along the line of sight



Other rest-frame UV lines

Nebular CIV is detected in most low-z confirmed LyC leakers.



Low-lonization State absorption lines

#### See Valentin & Cody's talks!



#### Nebular properties





See also Izotov+16b,18a,18b

#### Dust

Bluer UV  $\beta$  slopes generally linked to higher  $f_{esc}$ .



#### Other indirect indicators are:

- •stellar mass,  $M_{\star}$
- $ullet M_{UV}$
- ulletgalaxy UV half light radius,  $r_e$
- Dust reddening, E(B-V)
- $\bullet \Sigma_{SFR}$

• . . .

Using **SPHINX simulation**, Choustikov+24 predict  $f_{esc}$  based on a combination of observables, including the UV slope, E(B– V), H $\beta$  luminosity, MUV, and nebular line ratios (R23 and O32).



True  $\log_{10}(f_{\rm esc})$ 

Choustikov+24

Using **SED** fitting, we can also estimate  $f_{esc}$ .

Note that SED fitting relies on the assumption of stellar population, star formation history, and other models.



See Yuchen, Amanda and Emma's talks!



Using the LzLCS+ dataset (88 galaxies at  $z\sim0.3$ ), we calibrate an empirical relation between the  $f_{esc}$  values and the most correlated indirect indicators that che be measured during the EoR.

#### $log_{10}(f_{esc}) = A + Blog_{10}(O32) + Cr_e + D\beta$

$$A = -1.92 [-2.51, -1.71]$$

$$B = 0.48 [0.38, 0.69]$$

$$C = -0.96 [-1.20, -0.62]$$

$$D = -0.41 [-0.58, -0.31]$$

#### $log_{10}(f_{esc}) = A + BEW(H\beta) + Cr_e + D\beta$

$$A = -1.92 [-2.46, -1.75]$$

$$B = 0.0026 [0.0019, 0.0035]$$

$$C = -0.94 [-1.14, -0.67]$$

$$D = -0.42 [-0.59, -0.33]$$



Mascia+23b, Mascia+24a

- Jaskot+24 employed the **Survival Analysis**, originally from medical research, to better handle the broad  $f_{esc}$  range and numerous non-detections in the LzLCS+ dataset.
- Survival analysis models the likelihood of detecting  $f_{\it esc}$  given indirect indicators, treating nondetections as censored data.

| Model                                                                        | Variables                                                                  |                                |                                                          |                                                                                                        |                                               |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                              | Dust                                                                       | $\mathrm{Ly}lpha$              | Nebular                                                  | Luminosity                                                                                             | Morphology                                    |
| TopThree                                                                     | $\mathrm{E}(\mathrm{B}	ext{-}\mathrm{V})_{\mathrm{UV}}$                    | _                              | $\log(\mathrm{O32})$                                     | _                                                                                                      | $\log(\Sigma({ m SFR}))$                      |
| LAE                                                                          | $\mathrm{E}(\mathrm{B	ext{-}V})_{\mathrm{UV}}$                             | $\mathrm{EW}(\mathrm{Ly}lpha)$ | _                                                        | $M_{1500}$                                                                                             | _                                             |
| LAE-O32                                                                      | $\mathrm{E}(\mathrm{B}	ext{-}\mathrm{V})_{\mathrm{UV}}$                    | $\mathrm{EW}(\mathrm{Ly}lpha)$ | $\log(\mathrm{O32})$                                     | $M_{1500}$ , $\log(M_*)$                                                                               | _                                             |
| LAE-O32-nodust                                                               | _                                                                          | $\mathrm{EW}(\mathrm{Ly}lpha)$ | $\log(\mathrm{O32})$                                     | $M_{1500}$                                                                                             | _                                             |
| ELG-EW                                                                       | $\mathrm{E}(\mathrm{B}	ext{-}\mathrm{V})_{\mathrm{UV}}$                    | _                              | $\log(\mathrm{EW}(\mathrm{[OIII]} {+} \mathrm{H}\beta))$ | $M_{1500}$ , $\log(M_*)$                                                                               | _                                             |
| ELG-O32<br>ELG-O32- $\beta$<br>ELG-O32- $\beta$ -Ly $\alpha$<br>R50- $\beta$ | $\mathrm{E(B-V)_{UV}} \ eta_{1550} \ eta_{1550} \ eta_{1550} \ eta_{1550}$ | $f_{ m esc}^{{ m Ly}lpha} \ -$ | $ \log(\text{O}32) \\ \log(\text{O}32) \\ - $            | $M_{1500},  \log(M_*) \ M_{1500} \ M_{1500},  \log(M_*) \ M_{1500},  \log(M_*) \ M_{1500},  \log(M_*)$ | $_{-}$ $_{-}$ $_{\log(r_{50,\mathrm{NUV}}))}$ |
| $\beta$ -Metals                                                              | $eta_{1550}$                                                               | _                              | $12 + \log({ m O/H})$                                    | $M_{1500}$ , $\log(M_*)$                                                                               | _                                             |

Jaskot+24

Model calibrated using:

- $\bullet \beta$
- log(O32)
- $ullet M_{UV}$

The Cox models can be used also to predict  $f_{esc,Ly\alpha}$ 





Comparison with SED fitting results?

### Matching EoR galaxies and low-redshift sources

#### Grey-shaded area: z = 5-7 sample from several JWST programs





### Testing the new models on the few z = 3 known leakers

Predictions are effective

#### **BUT**

we still need to increase the statistics of known leakers at intermediate redshifts.



## Predicted fesc of EoR galaxies







- Gravitational lensing enables the detection of faint EoR galaxies.
- JWST programs (e.g., ALT, UNCOVER, CANUCS) are uncovering lensed galaxies with  $M_{UV} \sim -16$  with [OIII] and H $\beta$  detections.
- Follow-up UV/optical data will refine  $f_{esc}$  predictions and thus their ionizing photon contribution.

- •UV LF from Bouwens+21
- • $f_{esc}$  combining multiple predictors
- $\xi$ ion( $M_{UV}$ ) from Llerena+25



Agreement with  $< f_{esc} \xi_{ion} >$  predictions from Lya forest!





## Thank you!

### Conclusions

- At z ≈ 0.3, we have a large statistical sample of confirmed LCEs, which we are currently characterizing in terms of both spectroscopic and morphological properties.
- The mechanisms driving LyC emission appear to be diverse. Single property cannot reliably predict LyC escape

- At z ≈ 2–3, only a few robust LyC detections are currently available.
- Existing prediction methods appear to hold at these redshifts as well, but a larger statistical sample is needed.

- During the Epoch of Reionization, we can apply prediction methods calibrated at z ≈ 0.3 and tested at z ≈ 3 to estimate LyC escape on a source-by-source basis.
- Expanding the sample at these redshifts is crucial, especially toward fainter magnitudes, to better assess the contribution of faint galaxies.

0.3 2-3 EoR

Redshift