Probing galaxy kinematics and the epoch of reionization using Lyman-alpha emission

Tamal Mukherjee

School of Mathematical and Physical Sciences

Macquarie University, Sydney

Supervisors: Dr. Tayyaba Zafar, Dr. Themiya Nanayakkara

LYMAN 2025 Conference Orthodox Academy of Crete, Greece, 09 April 2025

Lya emission line profiles

Lya emission line profiles

Lya emission line profiles: Outflows and Inflows

1. Lya as a probe to the CGM gas kinematics

The MAGPI Survey: VLT/MUSE Large Program

MAGPI LAE Sample

MUSE Stellar Continuum

MUSE Stellar Continuum

2000

1000

z = 2.948

MUSE Stellar Continuum

MUSE Stellar Continuum

Multiphase ISM, blueshifted absorptions \rightarrow outflows

Unfortunately!

No deep IR imaging and Spectroscopy

Blue-dominated Lya nebula in HUDF

z = 3.328

75 kpc extended

Blue-dominated Lya nebula at z = 3.328

Blue-dominated Lya nebula at z = 3.328

Blue-dominated Lya nebula in HUDF

SOMA 2

SFR = 1.3 M $_{\odot}$ / yr M $_{\star}$ = 10⁷ M $_{\odot}$

SOMA₁

SFR = $18 M_{\odot} / yr$ $M_{\star} = 10^{9.5} M_{\odot}$

SOMA 3

SFR = 22 M $_{\odot}$ / yr M = 10^{9.4} M $_{\odot}$

Blue-dominated Lya nebula in HUDF

SOMA 2

SFR = 1.3 M $_{\odot}$ / yr M $_{\star}$ = 10⁷ M $_{\odot}$

SOMA₁

SFR = $18 M_{\odot} / yr$ $M_{\star} = 10^{9.5} M_{\odot}$

SOMA 3

SFR = 22 M $_{\odot}$ / yr M $_{\star}$ = 10^{9.4} M $_{\odot}$

$$sSFR_{H\alpha} = 10^{-7.3} \, yr^{-1}$$

Starburst! (Rinaldi et al. 2025)

An efficient galaxy formation mode

Interaction driven starburst

A primary galaxy outflowing gas (low metallicity), which is getting reaccreted onto a new galaxy (low in stellar mass), and fueling new star formation

Add on: HST data reveals LyC emission detections (> 5 sigma) at the location of primary galaxy driving outflows

A nice talk from **Alexandra Le Reste** this morning!

Blue flux decreases in the outskirts

z = 4.788

Peak sep. decreases in the outskirts

Spatially-resolved study of red-dominated halos

Red-dominant Lya -> Outflows

Mukherjee T. et al. in prep.

Spatially-resolved study of double-peaked halos

Spatially-resolved study of double-peaked halos

2. Lya as a probe to the cosmic reionization

IGM neutral fraction

IGM neutral fraction

A sample of 22 MAGPI LAEs at z = 5.5 - 6.6

Asymmetric Gaussian fitting:

$$F(\lambda) = f_{\text{max}} \exp \left(-\frac{\Delta v^2}{2(a_{\text{asym}}(\Delta v) + w)^2}\right)$$

Evolution of Lya line widths during reionization

Evolution of Lya line widths during reionization

At z > 6, high-luminosity LAEs are showing larger line widths!

Size of ionized bubbles around LAEs

$$R_{\rm B} pprox \left(\frac{3 \, Q_{\rm ion} f_{\rm esc}^{\rm LyC} \, t_{\rm age}}{4\pi \, n_{\rm H}(z)} \right)^{1/3}$$

 $f_{\rm esc}$ = 5 %, $t_{\rm age}$ = 100 Myr

Cen & Haiman 2000

Spearman = 0.53p-value = 0.006[bMbc] 0.6 0.4 $z = 5.5 \le z < 6$ $z = 6 \le z < 6.6$ 100 150 350 250 400 450 FWHM $[km s^{-1}]$

Mukherjee T. et al. 2024, PASA, 41, e105

UV-bright galaxies blowing larger bubbles!

IGM transmission and bubble sizes

Following the talk of Pratika Dayal:

Patchy reionization

Summary

- \circ We discovered blue-dominated Ly α haloes in MAGPI data and a blue-dominated Lya nebula in HUDF, tracing CGM gas inflows \rightarrow a unique laboratory to study gas accretion processes in galaxies
- We conclude that these systems are interaction driven, where a primary galaxy is outflowing gas (metal poor), which is getting reaccreted onto a new galaxy (low in stellar mass), and fueling new star formation → an efficient galaxy formation mode
- \circ We study spatially resolved properties of Lya halos through spectroscopy and modeling: blue-to-red flux ratio (shell velocity) and peak separation (column density) decreases with increasing radius. One halo deviates from this \rightarrow warrant further study
- \circ We studied the evolution of Lya line width with luminosity during reionization epoch. We found that at z > 6, high-luminosity LAEs are showing wider Lya, potentially indicating that they are residing in larger ionized bubbles.

