Dissecting the roles of feedback and interaction for LyC escape

A case study using NIRSpec Integral Field Spectroscopy

Escape of Lyman radiation from galactic labyrinths OAC, Kolymbari, Crete.

T. Emil Rivera-Thorsen 2025-04-09

Stockholm

University

Motivation

Ionizing escape is regulated to scales of single H11 regions

Ionizing escape is regulated to scales of single H11 regions

Up close, LyC is difficult to observe

Haro II: Nearest known leaker at z=0.02. LyC location is uncertain due to COS aperture size.

Image: van Eymeren & López-Sánchez (ATNF)

Gravitational Lensing to the rescue!

Lensed galaxies at Cosmic Noon let us see both precise LyC and detailed ISM

Haro II again.

The **Sunburst Arc** @ $z \sim 2.4$: Most precise localization of LyC escape (model of delensed galaxy courtesy of Keren Sharon).

The Sunburst Arc

Quick (re-)introduction to the Sunburst Arc

- ∷ Brightest known lensed arc, with 12 (partial) images
- :: Central Ly α peak means direct escape with $N_{\rm HI} \lesssim 10^{13}$ practically empty.
- ∴ Surrounding peaks mean thicker HI cover in other directions
- ∴ Strong, highly localized LyC escape— but there is dust
- ∴ LyC among multiple lines of sight ⇒ a rare chance for IGM tomography (see Michelle Berg's talk)

Quick (re-)introduction to the Sunburst Arc

:: Brightest known lensed arc, with 12 (partial) images

The galaxy is likely **interacting** or has been recently (Could well be relevant for LyC escape, see **Alex Le Reste**'s talk).

t escape empty. ker HI cover

scape

- but there is dust
- ∴ LyC among multiple lines of sight ⇒ a rare chance for IGM tomography (see Michelle Berg's talk)

"Artist's impression" by Keren Sharon

Observations for this work: NIRCam and NIRSpec IFU

The LCE cluster

Cluster properties from previous works

- **Young** and very **blue** with very massive stars
 - Stellar pop. age $\sim 3-4$ Myr (Chisholm+ 2019, Meštrić+ 2023, R-T+ 2024)
 - \therefore Extreme blue slope $\beta \approx -3$ (Kim+, 2023)
 - ∴ Signs of presence of VMS (Meštrić+, 2023)
- :: Masssive and dense
 - $M_{\star} \approx 10^7 M_{\odot}$ (Pascale+, 2023)
 - $Holdsymbol{ } M_{
 m dyn} pprox 10^7 M_{\odot} ext{ (Vanzella+, 2022)}$
- :: Nitrogen loud
 - $ightharpoonup \log (N/O)_{
 m N~III} pprox -0.23$ (Pascale+, 2023)

Model photo, not the real Sunburst LCE cluster.

Cluster properties from stacked NIRSpec IFU apertures

The LCE is a **massive** ($M\sim 10^7 M_{\odot}$) proto-GC with a surprisingly large population of **WR-stars** (including VMS).

Cluster properties from stacked NIRSpec IFU apertures

The LCE is a **massive** ($M \sim 10^7 M_{\odot}$) proto-GC with a surprisingly large population of WR-stars (including VMS).

Abundances from direct T_e -method

7300

7320

Rest-frame Wavelength (Å)

7340

6300

6280

6320

Abundances from direct T_e -method

Resolved ISM properties

Line maps and kinematics from single Gaussian fits

Line maps and kinematics from single Gaussian fits

Chemical enrichment

Patterns in dust, ionization and sulphur deficiency

Patterns in dust, ionization and sulphur deficiency

Integrated, weighted properties

We can "squint" to compare to un-lensed galaxies at similar redshifts:

Mask containing the most complete image of the galaxy, overlaid with inverse magnification

Example: BPT and [S II] diagram

Shameless plug

The Sunburst Arc with JWST: II. Observations of an Eta Carinae Analog at z = 2.37

S. Choe^{1*}, T. Emil Rivera-Thorsen¹, H. Dahle², K. Sharon³, M. Riley Owens⁴, J. R. Rigby⁵, M. B. Bayliss⁴, M. J. Hayes¹, T. Hutchison⁵, B. Welch^{5,6,7}, J. Chisholm⁸, M. D. Gladders^{9,10}, and G. Khullar¹¹

Pointing 2 contains an extremely magnified ($\mu \approx 10^4$) η Car-analog embedded in a bright cluster!

Summary

A coherent picture is beginning to form:

- :: The cluster is **young**, **hot** and **massive**
- :: It sits in the **outskirts** of the galaxy
- :: The galaxy is likely interacting → could help strip HI away from the cluster (hat tip @ le Reste)
- :: The moderately thick and uniform **dust layer** could hint at photoionization as most important ionization mechanism
- :: Outflows exist but... They are weird.
- This scenario seems consistent with the Ly α modeling by Almada Monter+
- Arr LyC proxies such as O32, SII deficit, and Lylpha seem to work fairly well in this case
 - Especially locally near the LCE, but also for the "squinted" spectra.
- ∴ Strange spatial coincidence in N⁺ enrichment and gas outflows

Thank y'all for now!

