

Escape of Lyman radiation from galactic labyrinths 9th April 2025

Probing the escape of ionising photons: ISM absorption lines and dust attenuation in SPHINX20

Valentin Mauerhofer

The epoch of reionisation

$$\frac{\text{Ionising}}{\text{emissivity}} = \rho_{\text{UV}} \times \xi_{\text{ion}} \times f_{\text{esc}}$$

Escape fraction of ionising photons:
Crucial to identify the sources of
Reionisation

Lyman continuum escape and metallic UV absorption lines

Sill 1526

weak line ~

rather high fesc

Sill 1526

strong line

rather low fesc

The Galaxies that Reionized the Universe

Age of the Universe

Public data release of SPHINX20 galaxy properties: emission lines, stellar and nebular continuum, etc.

1380 star-forming galaxies, ranging from z=4.6 to z=10, mock observations in 10 viewing angles.

 $SFR \ge 0.3 M_{\odot} \, yr^{-1}$

Katz et al. 2023

• Using the Monte-Carlo code RASCAS Michel-Dansac+20

• Using the Monte-Carlo code RASCAS Michel-Dansac+20

• Using the Monte-Carlo code RASCAS

Michel-Dansac+20

modelled with BPASS

Computation of ion densities

• Using the Monte-Carlo code RASCAS

Michel-Dansac+20

Stellar continuum modelled with BPASS

Computation of ion densities

Dust modelling

Using the Monte-Carlo code RASCAS

Michel-Dansac+20

Stellar continuum modelled with BPASS

Computation of ion densities

Dust modelling

Photons transferred with **RASCAS**, including resonant scattering

Are the mock absorption lines realistic?

Gazagnes et al. 2023

Comparison with low-z analogs of high-z galaxies: the CLASSY sample (Berg+22). Compact, low metallicity star-forming galaxies

~90% of CLASSY galaxy absorption lines are well reproduced by a single z~3 simulated galaxy with Mstar ~ 10^9

Can we infer escape fractions of ionising photons from absorption lines?

No good correlation between f_esc and simple line properties

Very weak (or absent) absorption lines indicate high escape, but otherwise no solid prediction of the escape fraction.

Applying a dust correction to the residual flux

Reddy+16 Steidel+18 Gazagnes+18 Chisholm+18

Applying a dust correction to the residual flux

Reddy+16 Steidel+18 Gazagnes+18 Chisholm+18

Applying a dust correction to the residual flux

Reddy+16
Steidel+18
Gazagnes+18
Chisholm+18

In this "dusty picket-fence model", the escape fraction of ionising photons is equal to the escape fraction of line photons, which is:

Dust corrected residual flux correlates strongly with f_esc

• We find this approximate relation: $f_{\rm esc} \approx 1.04 \left(R_{\rm flux}^{1526} \cdot 10^{-0.4 A_{1500}} \right)^{1.887} - 0.002$

- Mean error of this prediction of the escape fraction: 0.015
- For galaxies with significant escape, the mean error is 0.046
- We find a better prediction with Sill 1526A than with Sill 1260A

Application to the LzLCS sample

Significant discrepancies appear when applying our diagnostic to real data

Several systematic differences must be taken into account, mainly:

- Residual flux measurements are very sensitive to spectral resolution
- No Sill 1526 in LzLCS
- The dust attenuation cannot always be accurately recovered from spectral fitting

Biases in dust attenuation measurements

1:1 Line 4 10^2 Number of spectra A_{1500, ficus} [mag] 10¹ 10⁰ 2 4 A₁₅₀₀ [mag]

CIGALE

SED-fitting methods often underestimate the extinction of dusty galaxies

Summary

 Using the radiative transfer code RASCAS, I produce realistic ISM absorption lines from the cosmological simulation SPHINX20

The dust-corrected residual flux of Sill 1526 is a good tracer of f_esc

- However, the dust attenuation is difficult to infer with (UV-optical)
 SED-fitting
- Check-out the SPHINX20 public data release, containing many galaxy properties, emission lines, mock photometry, etc.
 Absorption lines to be added in a few weeks!

https://github.com/HarleyKatz/SPHINX-20-data Katz et al. 2023

Backup slides

Atomic levels of Si+

LzLCS fesc comparison

f_esc predictions for the CLASSY sample

LEPHARE predictions of SPHINX20 dust attenuations

