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1) Stars that ionize 
Massive single stars
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The well-known ionizing stars: OB and WR stars

5

Most of the ionizing radiation is created by hot, massive, OB and 
Wolf-Rayet stars. This is well produced in spectral population 
synthesis models
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Extremely scarce direct measurements in the EUV
Only two massive stars have direct detections of ionizing radiation. This was observed by the Extreme Ultraviolet 
Explorer (EUVE) through a tunnel largely free from gas. 
Cassinelli et al. (1995, 1996)

 CMa (B2 II)ϵ

See also Shull et al. (2024)
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Model

 CMa has almost 10x more ionizing flux than predicted by 
the model that fit (close to) perfectly in other wavelengths.
ϵ

Observational constraints that help guide stellar 
atmosphere codes are almost non-existent. As a 
result, the ionizing emission from stars remains 
uncertain. 

See also Shull et al. (2024)
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Indications from indirect methods

Observations of Strömgren spheres exist - here is an example from Zastrow et al. (2013) as part of the Magellanic 
Cloud Emission Line Survey (MCELS). 

The figure shows three bubbles shining in H  (left) and 
a color image (right) of H  (red), [OIII] 5007 (blue), [SII] 
6720 (green). Each bubble hosts a central massive star 

(O5.5 - 28, B0 - 32 & 35). 

α
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The upper mass limit (VMSs)

8

(cf. Gräfener & Vink 2015, Cheng et al. 2024)

Wavelength   

N
or

m
al

iz
ed

 fl
ux

   
   

   
   

   
  

(30 Doradus super star cluster in LMC, Crowther et al. 2016)

The very massive stars (VMS, >100 M☉) are perhaps the best at ionizing and they produce He II emission! 
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… but we do not really know how very massive stars evolve, because (1) we do not have enough benchmark 
observations, (2) stellar wind mass loss is not sufficiently understood, and (3) VMSs could very likely be products of 
binary interaction.
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Rotational velocities of massive stars

9

(see also Huang et al., 2010, Dufton et al., 2011, de Mink et al., 2013)
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Chemically homogeneously evolving stars should show 
(1) high ionizing emission, (2) rapid rotation, (3) enhanced 
helium and nitrogen. 

Szécsi et al. (2015), Kubátová et al. (2019)
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(Sana et al., 2012)
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… and they are promising sources for 
both H- and He- ionizing radiation
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Cool, puffed-up stripped stars 
in the Milky Way and 
Magellanic Clouds

Ramachandran et al. (2023)
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The second star accretes material during mass transfer and spins up because the accretion 
stream doesn’t hit exactly in the center of the star. If the material is efficiently accreted, the 
accretor star grows in mass and rejuvenates into a massive blue straggler. 
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Rotational mixing remains unconfirmed observationally

model

observational 
constraint

Abdul-Masih et al. (2021)
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Accreting stars 1: stellar accretors and rotation

If rotational mixing is efficient for spun-up accretors, it will 
change how much H and He+ ionizing emission a 
population outputs 
Stanway et al. (2016), Lecroq et al. (2024)
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Accreting white dwarfs - hard ionizing sources

White dwarfs that accrete material rapidly can reach 
both extreme temperatures and high luminosities! 
(Souropanis et al., 2022, 2023)

Credit: Chandra

(cf. Woods & Gilfanov 13, Chen et al. 2015)
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What is binary interaction?

e!ectively
single

envelope
stripping

merge

accretion & 
spin up or CE

~29%

~24%

~14%

~33%

~29%

~24%

~14%

~33%

Figure credit: S. E. de Mink 
(see also Vanbeveren et al. 1980/2007, Eldridge et al. 2008, Schneider et al. 2014/15)

70 % of massive stars  
interact in binaries
(Sana et al., 2012)

Severe mass loss

Drastically  
reduced size

Very high  
temperature

Exposed core

Rejuvenation

Spin-up

Blue-stragglers

X-rays

Magnetic fields

TŻOs

Blue supergiants
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Increased mass
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Stellar mergers are predicted to become magnetized stars
(Schneider et al., 2019)

Stellar merger products = magnetic stars?
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Stellar mergers are predicted to become magnetized stars
(Schneider et al., 2019)

Stellar merger products = magnetic stars?

About 7% of massive main-
sequence stars are magnetized
(Wade et al., 2014, MiMeS project)
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The evolution of magnetized stars is under active research. Depending on the magnetic field morphology 
and how the magnetic field influences mixing, the star could (1) avoid wind mass loss, (2) induce strong 
shear, (3) experience rapid spin down…
(e.g., Keszthelyi et al., 2020, 2022)

Stellar merger products = magnetic stars?

(Note: assumes rotational mixing is efficient.)
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2) Hard ionizing radiation
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The He II problem

Stellar populations appear to emit an 
unexpected amount of He+ ionizing emission.


So far, we do not know what sources produce 
the majority of these photons.

(Olivier et al. 2021, Shirazi & Brinkmann 2012, Nanayakkara et al. 2019, Saxena et al. 2020, etc…)
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The He II problem

Stellar populations appear to emit an 
unexpected amount of He+ ionizing emission.


So far, we do not know what sources produce 
the majority of these photons.

Senchyna et al. (2019)

Local star-forming galaxies also show that 
He II emission is more prominent at low 
metallicities

(Olivier et al. 2021, Shirazi & Brinkmann 2012, Nanayakkara et al. 2019, Saxena et al. 2020, etc…)
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Hard ionizing radiation from stripped stars

With weaker winds, much more He+ ionizing emission emerges from the stellar photosphere!

Benjamín  
Navarrete 
(PhD, ISTA)
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Hard ionizing radiation from stripped stars

Benjamín  
Navarrete 
(PhD, ISTA)

Beryl Hovis- 
Afflerbach 

(PhD, Northwestern)

Massive helium-stars should exist in low-metallicity environments ( ) — and they 
boost the He+ ionizing emission by a factor of 2-5. 

Z ≲ Z⊙/5

Hovis-Afflerbach, Götberg, et al. (2025)
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HeII Emission in 
Local Galaxies 
with IMACS

PI: Senchyna & Götberg

• What sources emit the hard He+ ionizing 
radiation found in low-Z star-forming 
galaxies? 

• HeII 4686 narrowband (off and on band) 
filters for IMACS f/4 + multislit masks

Example: WLM - local star forming galaxy (Z~10 % Zsun)

Peter  
Senchyna

24Ylva Götberg Institute of Science and Technology Austria (ISTA)
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3) Ongoing and future directions
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Low-Z: the need for benchmark stars

Observations of individual stars are necessary for calibrating both evolutionary and spectral models - therefore also 
for confirming the validity of spectral population synthesis. 
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Very low metallicity massive stars

The sample of very low-metallicity massive stars is growing, but (1) do these really match evolutionary 
models?, and (2) are we missing the very massive stars? 
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Very low metallicity massive stars

The sample of very low-metallicity massive stars is growing, but (1) do these really match evolutionary 
models?, and (2) are we missing the very massive stars? 

Gull+22

Telford+24

Lorenzo+22
Sextans A (~6% Z☉)

Magellanic Bridge (~10% Z☉)

Ramachandran+22 
(see also Schösser+25)

See Göran Östlin’s talk on 
resolved stellar populations 
in I Zw 18.
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Binarity at Low Metallicity (BLOeM)

BLOeM is an ESO large program which attempts to address both binary interaction and massive star 
evolution at low metallicity. BLOeM contains 25 epochs of VLT/FLAMES spectra for almost 1000 massive 
OB stars in the Small Magellanic Cloud. 
(Shenar et al., 2024)
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Binarity at Low Metallicity (BLOeM)

BLOeM is an ESO large program which attempts to address both binary interaction and massive star 
evolution at low metallicity. BLOeM contains 25 epochs of VLT/FLAMES spectra for almost 1000 massive 
OB stars in the Small Magellanic Cloud. 
(Shenar et al., 2024)

Massive stars are perhaps even more commonly in 
binaries at low metallicity
(Villaseñor et al., 2025, Sana et al. 2025)
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Towards a statistical population of stripped stars

Beryl Hovis- 
Afflerbach 

(PhD, Northwestern)

There should be about 7,500 stripped stars 
with > 1 M☉ in the Magellanic Clouds
(Hovis-Afflerbach et al., 2025)
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(postdoc,  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Carefully reduced Swift data reveals 200 more 
stripped stars with > 1 M☉ (Ludwig et al., to be subm.)

There should be about 7,500 stripped stars 
with > 1 M☉ in the Magellanic Clouds
(Hovis-Afflerbach et al., 2025)

Ultraviolet Explorer (UVEX)

Approved NASA MIDEX
Planned launch: 2030

FUV & NUV bands for imager 
with FOV ~10 square deg.

R > 1000 spectrograph with coverage
1150-2650 Å

Within Science Pillar 1: Map the entire 
mass range of stripped stars in the 
Magellanic Clouds 
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more hard ionizing emission 
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predict

• Really hot sources are needed 
to produce this radiation - 
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homogeneous evolution or 
accreting compact objects? 

Ongoing efforts

• Searches for low-metallicity 
massive stars continue

• Binary properties of massive 
stars are being tracked in the 
SMC (BLOeM)

• Larger candidate samples of 
stripped stars underway  
(e.g., UVEX) 
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Accreting stars 2: compact object accretors
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The upper mass limit (VMSs)
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Benjamín  
Navarrete 
(PhD, ISTA)

Spectral morphology of massive low-Z helium stars


