Reference: A. U. Enders, D. J. Bomans and A. Wittje, 2023, A&A, 672, A11 doi: 10.1051/0004-6361/202245167

Lyman Continuum Emitter candidates from Hell

Escape of Lyman radiation from galactic labyrinths Kolympari, Crete | April 17th – 21st, 2023

> Adam Enders | AIRUB enders@astro.rub.de

- need selection criteria:
 - *z* < 0.5: N_{LCE} = 61

= promising pathway for understanding LCEs

- need selection criteria:
 - *z* < 0.5: N_{LCE} = 61

• common in LCEs: hard radiation field

- need selection criteria:
 - z < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines

- context: proxy studies of low-z analogues

 = promising pathway for understanding LCEs
- need selection criteria:
 - *z* < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines
 - present in high-z SFGs

- context: proxy studies of low-z analogues

 = promising pathway for understanding LCEs
- need selection criteria:
 - *z* < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines
 - present in high-z SFGs
 - found in many confirmed (and candidate) LCEs

- need selection criteria:
 - z < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines
 - present in high-z SFGs
 - found in many confirmed (and candidate) LCEs
 - ...but also in AGN

- need selection criteria:
 - z < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines
 - present in high-z SFGs
 - found in many confirmed (and candidate) LCEs
 - ...but also in AGN
- He II λ4686 based diagnostic for SFG/AGN separation (Shirazi & Brinchmann, 2012, MNRAS, 421, 1043)
 - $\Phi_{\text{He}^+} = 54.4 \text{ eV}$

- context: proxy studies of low-z analogues

 promising pathway for understanding LCEs
- need selection criteria:
 - z < 0.5: N_{LCE} = 61

- common in LCEs: hard radiation field
- putative spectral feature: high ionisation emission lines
 - present in high-z SFGs
 - found in many confirmed (and candidate) LCEs
 - ...but also in AGN
- He II λ4686 based diagnostic for SFG/AGN separation (Shirazi & Brinchmann, 2012, MNRAS, 421, 1043)
 - $\Phi_{\rm He^+} = 54.4 \text{ eV}$

applied to SDSS-III / BOSS data yields **18 SFGs** with He II emission

J0006+0255	J0028+3035	J0131+0210	J0138+1114	J0150+1643	J0744+1858
J0753+2820	J0809+4918	J1037+2325	J1109+3429	J1141+6059	J1311+3750
J1313+6044	J1338+4213	J1411+0550	J1528+2318	J1556+1818	J1608+0413
					-
Credit: Sl	oan Digital S	ky Survey g	gri, 12.5" x 1	2.5"	

Average properties well in line with high-z SFGs:

z = 0.061	$\log sSFR/yr^{-1} = -8.15$
$\log M/M_{\odot} = 7.91$	$O_{32} = 6.58$
$\log O/H + 12 = 7.85$	$f_{\rm esc} = (0.079)$

Average properties well in line with high-z SFGs:

z = 0.061	$\log sSFR/yr^{-1} = -8.15$
$\log M/M_{\odot} = 7.91$	$O_{32} = 6.58$
$\log O/H + 12 = 7.85$	$f_{\rm esc} = (0.079)$

Why LCE candidates?

• large 0₃₂ ratios

Why LCE candidates?

- large 0₃₂ ratios
- deficient in [S II] emission (Wang et al., 2019, ApJ, 885, 57)

LCE candidates from Hell

Young "dual burst" at ages of 10 Myr and 1 Myr

Young "dual burst" at ages of 10 Myr and 1 Myr

 \rightarrow many recent Supernovae and LyC radiation from young population

LCE candidates from Hell

ESO 338-IG04

• candidate LCE @ d=37.5 Mpc

ESO 338-IG04

• candidate LCE @ d=37.5 Mpc

Mrk 71 / NGC 2366

- candidate LCE @ d=3.4 Mpc
- 2 SSCs @ 3-5 Myr, <1 Myr

ESO 338-IG04

• candidate LCE @ d=37.5 Mpc

Mrk 71 / NGC 2366

- candidate LCE @ d=3.4 Mpc
- 2 SSCs @ 3-5 Myr, <1 Myr

Tol 1247-232

- LCE @ z=0.048
- 26 SCs @ 12 Myr, <4 Myr

Micheva+2018

ESO 338-IG04

• candidate LCE @ d=37.5 Mpc

Mrk 71 / NGC 2366

- candidate LCE @ d=3.4 Mpc
- 2 SSCs @ 3-5 Myr, <1 Myr

Tol 1247-232

- LCE @ z=0.048
- 26 SCs @ 12 Myr, <4 Myr

Micheva+2018

Three Green Peas

• LBAs @ z~0.25

Adam Enders | AIRUB

ESO 338-IG04

candidate LCE @ d=37.5 Mpc

Mrk 71 / NGC 2366

- candidate LCE @ d=3.4 Mpc
- 2 SSCs @ 3-5 Myr, <1 Myr

Tol 1247-232

- LCE @ z=0.048 \bullet
- 26 SCs @ 12 Myr, <4 Myr

Three Green Peas

LBAs @ z~0.25

Sunburst Arc

- LCE @ z=2.37 \bullet
- 13 SCs @ <50 Myr
- decent fit: "dual population" @ 7 Myr, 2.5 Myr \bullet

Vanzella+2022

LCE candidates from Hell

• selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young dual starburst = common pattern (in many LCEs?)

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young **dual starburst** = common pattern (in many LCEs?)
- suggestive of a scenario for LyC leakage:

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young **dual starburst** = common pattern (in many LCEs?)
- suggestive of a scenario for LyC leakage:
 - ~ 10 Myr population: ISM restructuring (cavities, tunnels)

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young **dual starburst** = common pattern (in many LCEs?)
- suggestive of a scenario for LyC leakage:
 - ~ 10 Myr population: **ISM restructuring** (cavities, tunnels)
 - ~ 1 Myr population: LyC radiation

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young **dual starburst** = common pattern (in many LCEs?)
- suggestive of a scenario for LyC leakage:
 - ~ 10 Myr population: **ISM restructuring** (cavities, tunnels)
 - ~ 1 Myr population: LyC radiation
- Further reading:

"Lyman continuum leaker candidates among highly ionised, low-redshift dwarf galaxies selected from He II" A. U. Enders, D. J. Bomans and A. Wittje, 2023, A&A, 672, A11 (10.1051/0004-6361/202245167)

- selecting galaxies from high-ionisation emission lines yields a decent sample of candidate LCEs
- here: **18 new candidates** (among the closest LCEs if confirmed!)
- young **dual starburst** = common pattern (in many LCEs?)
- suggestive of a scenario for LyC leakage:
 - ~ 10 Myr population: **ISM restructuring** (cavities, tunnels)
 - ~ 1 Myr population: LyC radiation
- Further reading:

"Lyman continuum leaker candidates among highly ionised, low-redshift dwarf galaxies selected from He II" A. U. Enders, D. J. Bomans and A. Wittje, 2023, A&A, 672, A11 (10.1051/0004-6361/202245167)

Thank you for your attention!

Ancillary Slide I: LCE sketch (annotated)

Ancillary Slide II: Images (to Scale)

Credit: Sloan Digital Sky Survey | gri

Ancillary Slide III: BPT diagram

Ancillary Slide IV: Stacked Spectrum

Ancillary Slide V: no f_{esc} – He II correlation

Ancillary Slide VI: SFHs

LCE candidates from Hell