

Riley Owens -University of Cincinnati -10:00 tomorrow Keunho Kim -University of Cincinnati -12:30 tomorrow

Emil Rivera-Thorsen -Stockholm University - 2:40 tomorrow

Characterizing **Strongly-Lensed** Lyman-Alpha Galaxies at z > 4

Speaker - Alexander Navarre PhD Advisor - Matthew Bayliss Email - navarrae@mail.uc.edu

1

Background & Motivation

Universe Cools, Time Passes, Neutral IGM **Ionized IGM Cosmic Reionization** Years after the Big Bang 400 thousand 0.1 billion 4 billion 8 billion 1 billion 13.8 billion The Big Bang Formation of first astronomical objec Recombination The Dark Age Present day Reionization **Fully ionized** Neutralized Fully ionized 1000 100 10 1⁺Redshift

What Caused Reionization?

ARTWORK: NASA, ESA, Joseph Olmsted (STScI)

Quasars

Unclear role at z > 6

- **<30 %** (Masters 2012, Ricci 2017)
- **Quasar-Dominated** (Madau & Haardt 2015)

Image Credit: NASA, ESA, Hubble Star-Forming Galaxies (SFGs)

Lyman-Continuum (LyC) photons from young stars escape host galaxy

How do they create enough ionizing photons?

Star-Forming Galaxies And Lyman Radiation

- Problems with observing LyC
 - LyC escape depends on neutral Hydrogen morphology

 Direct detection difficult above z ~ 4.5

 Lyman-Alpha (Lya) is bright and resonantly scatters with neutral Hydrogen -> complex radiative transfer Figure Credit: M. Gronke; (Rivera-Thorsen et. al 2017) Blue - Lya Red - LyC <u>Grey - Neutral Hydrogen</u>

$\textbf{Ly} \alpha \textbf{ Size}$

Understanding Ly**a** morphology -> How could LyC photons have escaped at high z.

LARS

Lyman-Alpha Reference Survey

Z = 0

- 0.6 < r_{1/2} < 12.21 kpc
- Guaita et. al 2015

Z = 0

- 1.03 < r_s < 9.05 kpc
- Rakesh et. al 2022

Z = 0

- 0.2 < r_{p. 20} < 28.0 kpc
- Melinder et. al 2023

Compact Emission

z = 3.1

- \lesssim 1.5 kpc
- Bond et. al 2010
- z = 4.4
 - ≲ 2 kpc
 - Finkelstein et. al 2011

0.**1** < z < 0.35

- r ~ 0.33 kpc
- Kim et. al 2021

Extended Emission

z = 2.6

- Stiedel et. al 2011

2.9 < Z < 6.7 (Lensed LAEs)

- 1.15 < c_{Lya} < 33.3
- Claeyssens et. al 2022

$\textbf{Ly} \alpha \textbf{ Size}$

Understanding Lya morphology -> How could LyC photons have escaped at high z.

LARS	Compact Emission	Extended Emission
Lyman-Alpha Reference Survey	z = 3.1	
		z = 2,6

See: Rest of Conference!

• 1.03 < r_s < 9.05 kpc

• Rakesh et. al 2022

Z = 0

- 0.2 < r_{p, 20} < 28.0 kpc
- Melinder et. al 2023

• Finkelstein et. al 2011

0.**1** < z < 0.35

- r ~ 0.33 kpc
- Kim et. al 2021

Lig < Z < O./ (Lensed LAES)</pre>

- 1.15 < c_{Lya} < 33.3
- Claeyssens et. al 2022

Sample - Lyman-Alpha Emitters (LAEs)

Motivating Questions

- 1. What are the physical properties of high-redshift LAEs?
- 2. Is their Lya distribution smooth or clumpy?
- 3. Where, and how often, is the Lya emission spatially offset from the UV continuum emission?

Sample & Methods

Sample - Lyman-Alpha Emitters (LAEs)

Motivating Questions

- **1**. What are the physical properties of high-redshift LAEs?
- 2. Is their Lya distribution smooth or clumpy?
- 3. Where, and how often, is the Lya emission spatially offset from the UV continuum emission?

Prospector

Prospector

Identifier	log(Lensed Stellar Mass $[M_{\odot}]$)	$\log(\text{Intrinsic Stellar Mass }[M_{\odot}])$	Mass-Weighted Age [Myr]	Dust1 $[A_V]$
L1	$9.85\substack{+0.62\\-0.48}$	$8.15\substack{+0.64\\-0.51}$	17^{+19}_{-8}	$0.10\substack{+0.23\\-0.08}$
L2	$9.72\substack{+0.43\\-0.61}$	$8.60^{+0.44}_{-0.61}$	8 ⁺⁹ -3	$0.09^{+0.14}_{-0.07}$
L3	$9.69\substack{+0.58\\-0.68}$	$7.79\substack{+0.58\\-0.68}$	33^{+83}_{-20}	$0.57\substack{+0.84\\-0.43}$
L4	$9.94^{+0.45}_{-0.40}$	$8.82^{+0.45}_{-0.40}$	20^{+27}_{-9}	$0.46^{+0.47}_{-0.28}$
L5	$10.41\substack{+0.09\\-0.08}$	$8.71^{+0.10}_{-0.10}$	7^{+2}_{-1}	$0.23_{-0.06}^{+0.06}$
L6	$10.55\substack{+0.26\\-0.26}$	$9.24_{-0.37}^{+0.47}$	16^{+11}_{-06}	$0.42^{+0.56}_{-0.31}$
		$200 - 0 = 0.46^{+0.47}_{-0.28}$	100 200 300 400 500 Mass Weighted Age (Myr)	0 600 16

Motivating Questions

- 1. What are the physical properties of high-redshift LAEs?
- 2. Is their Lya distribution smooth or clumpy?
- 3. Where, and how often, is the Lya emission spatially offset from the UV continuum emission?

Angular Sizes

Angular Size -> Physical Size

- Half-Light Length
 - Lyα: 800 pc
 - Continuum : 500 pc
- Centroid Separation
 - 350 pc

Lens Models from Sharon et. al 2020

Results

Lyman-Alpha Spatial Offsets

Shibuya et. al 2014

Physical Sizes & Offsets

Pearson Correlation Coefficient p = 0.83 p = 0.62

Clumpy vs. Extended

Discussion

Motivating Questions

What are the physical properties of high-redshift LAEs?

Identifier	$\log(\text{Lensed Stellar Mass }[M_{\odot}])$	$\log(\text{Intrinsic Stellar Mass }[M_{\odot}])$	Mass-Weighted Age [Myr]	Dust1 $[A_V]$
L1	$9.85^{+0.62}_{-0.48}$	$8.15\substack{+0.64\\-0.51}$	17^{+19}_{-8}	$0.10^{+0.23}_{-0.08}$
L2	$9.72^{+0.43}_{-0.61}$	$8.60^{+0.44}_{-0.61}$	8+9	$0.09_{-0.07}^{+0.14}$
L3	$9.69\substack{+0.58\\-0.68}$	$7.79_{-0.68}^{+0.58}$	33^{+83}_{-20}	$0.57_{-0.43}^{+0.84}$
L4	$9.94_{-0.40}^{+0.45}$	$8.82^{+0.45}_{-0.40}$	20^{+27}_{-9}	$0.46\substack{+0.47\\-0.28}$
L5	$10.41\substack{+0.09\\-0.08}$	$8.71_{-0.10}^{+0.10}$	7^{+2}_{-1}	$0.23_{-0.06}^{+0.06}$
L6	$10.55\substack{+0.26\\-0.26}$	$9.24\substack{+0.47\\-0.37}$	16^{+11}_{-06}	$0.42^{+0.56}_{-0.31}$

- Stellar mass of 7.5 < log(M) < 9.5
- Age < 50 Myr, consistent with young, massive stars
- Low to moderate dust values

Is the Lya distribution smooth or clumpy?

- Both!
 - LAEs with multiple, compact, regions.
 - LAEs with one, extended region.

Is the Lya distribution smooth or clumpy?

- Both!
 - LAEs with multiple, compact, regions.
 - LAEs with one, extended region.

Questions

Speaker - Alexander Navarre

PhD Advisor - Matthew Bayliss

Email - navarrae@mail.uc.edu