HI properties of local Lyα-emitting galaxies

Alexandra Le Reste

Stockholm University

Matthew Hayes, John Cannon, Jens Melinder, Axel Runnholm, T. Emil Rivera-Thorsen, Göran Östlin, Angela Adamo

OAC, April 2023

Introduction

HI in the ISM: regulates Lyman radiation escape out of galaxies

Also see Shapley et al. 2003, Rivera-Thorsen et al. 2015, Henry et al. 2015, Gazagnes et al. 2018, Saldana-Lopez et al. 2022, and many other...

Introduction

Observations **around star-forming regions:** porous, out/inflowing neutral ISM facilitates $Ly\alpha$ escape

→ How do local conditions connect with the global HI properties of galaxies?

THE 21CM LINE

Part 1: HI properties

21cm HI observations

21cm HI observations

* Where low redshift means z<0.05

The Lyman Alpha Reference sample

The Lyman Alpha Reference sample

The Lyman Alpha Reference sample

Main selection criteria

- $EW_{H\alpha} > 100 \text{ Å} (40 \text{ Å})$
- z > 0.01 (0.028)
- z < 0.3 (0.05)

Very Large Array observations in compact D-configuration : 37 galaxies

VLA ~1' resolution, ~32' FOV vs HST : 2.5" / ~20"

LARS - HI properties

33/37 galaxies detected in 21cm with VLA D-configuration

- $M_{HI}: 6 \times 10^8 3 \times 10^{10} M_{\odot}$
- f_{HI} : 0.04 8.3
- $W_{50,HI}$: 43 454 km. s⁻¹

$$\overline{M_{HI}} = 5 \times 10^9 M_{\odot}$$
$$\overline{f_{HI}} = 0.3$$
$$\overline{W_{50,HI}} = 169 \ km. \ s^{-1}$$

21 cm properties of Ly α -emitting galaxies

HI properties **consistent with z=0** optically-selected galaxies

Weak Lya: $EW_{Ly\alpha} < 5 \text{ Å}$ Intermediate Lya: $EW_{Ly\alpha} = 5 - 20 \text{ Å}$ Strong Lya: $EW_{Ly\alpha} > 20 \text{ Å}$

No clear correlation of Ly α with global HI properties

No clear correlation of Ly α with global HI properties

But $Ly\alpha$ is a multivariate problem... Maybe adding parameters will solve it?

Multivariate linear regression

Model from *Runnholm et al. 2020*

	original model	
Rank	Forward/Backward	
1	SFR	
2	E(B-V)	
3	F_{cov}	
4	UV size	
5	O32	
6	$12 + \log(O/H)$	
7	w_{90}	
8	M_{*}	
9	V 95	

Multivariate linear regression

Swapping galaxy for global HI properties does not improve the R² much

	original model	HI model
Rank	Forward/Backward	Forward/Backward
1	SFR	SFR
2	E(B-V)	E(B-V)
3	\mathbf{F}_{cov}	F _{cov}
4	UV size	$M_{\rm HI,b}$
5	O32	O32
6	$12 + \log(O/H)$	$12 + \log(O/H)$
7	w_{90}	UV size
8	\mathbf{M}_{*}	W50 _{HI,b}
9	V 95	w_{90}

R²=0.604

R²=0.607

Does HI regulate Lyα on small scales?

What happens on small scales?

Lya line profile: depends on HI properties Faint Lya emission traces the structure of Ha and 21cm emission

 \rightarrow Bimodal emission modality in the centre vs halo?

What happens on small scales?

Also Le Reste et al. 2022:

"[The 21cm distribution of the galaxies] indicates that mergers might play a decisive role in fragmenting the neutral ISM and in creating the conditions that facilitate Lya escape."

Identifying mergers with the 21cm line

Identifying mergers with the 21cm line

De Blok et al. 2018

Identifying interacting galaxies in the LARS

Merger morphology in optical or 21cm

Offset neutral gas envelope including companion object

Regular morphology but galaxy in known group

Identifying interacting galaxies in the LARS

Merger morphology in optical or 21cm

Regular morphology but galaxy in known group

Interacting galaxies in the LARS

Galaxies undergoing gravitational interaction with companion: **at least 60% of the sample** observed in 21cm.

Interacting galaxies in the LARS

Higher fraction of interacting galaxies at high M_* and high M_{HI}

Interacting galaxies in the LARS

Ly α class	interacting
weak emitter	71%
intermediate emitter	45%
strong emitter	85%

High fraction of interacting galaxies for **both the weak** and strong emitters

Anisotropic gas distribution resulting from mergers might play a role

Mergers and Lya radiation escape

Cooke+2010

"This [...] suggests a picture in which a measurable fraction of the $Ly\alpha$ emission of LBGs, and potentially LAEs, is generated via interaction mechanisms such as triggered star formation and the dispersal of obscuring gas and dust"

Mergers and Lya radiation escape

Cooke+2010

"This [...] suggests a picture in which a measurable fraction of the $Ly\alpha$ emission of LBGs, and potentially LAEs, is generated via interaction mechanisms such as triggered star formation and the dispersal of obscuring gas and dust"

Results not confirmed in subsequent studies (e.g. *Hagen+2016*)

A Pair count: not always able to identify interaction, especially at high-z

Mergers and Lyman radiation escape

 Starburst generates largescale ionized channels + outflows

3) Large scale displacement of HI
→ anisotropic escape to IGM

Mergers and Lyman continuum escape

Up to 82% of the HI mass is offset from the LyC producing regions

Mergers and Lyman continuum escape

Don't miss Timmy's talk this afternoon!

Conclusions

HI properties of $Ly\alpha$ -emitters

- Lyα-emitting galaxies have global HI properties similar to bulk of z~0 galaxies
- Global HI properties do not impact the Ly α EW, fesc or luminosity much

Gravitational interaction

- At least 60% of LARS galaxies are interacting gravitationally with a companion
- 70% of weak emitters/absorbers AND 80 % of high Lyα emitters are interacting – due to anisotropy in merger interactions
- Higher fraction of mergers at high stellar masses: interaction required so sufficiently perturb the ISM?

Open questions

\rightarrow Correlation between Ly α properties and 21cm on kpc scale?

\rightarrow Effect of environment on Ly α emission?

→Which mergers are Ly-emitters ? What characteristic timescales?

Ευχαριστώ!