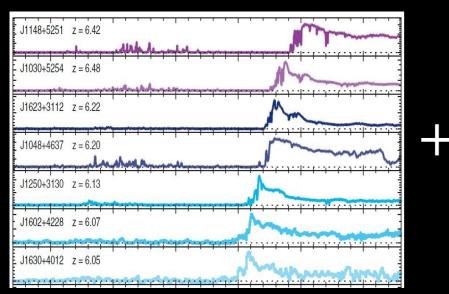

Escaping from the Galactic Labyrinths through stellar Daedalus or following AGN Ariadne's wire like Theseus ?

Andrea Grazian (INAF-OAPd) Escape of Lyman radiation from galactic labyrinths OAC, Kolymbari, Crete - April 21, 2023

Reionization: What ?

Hydrogen Reionization: major phase transition of the Universe


BigDark AgesThe Epoch of ReionizationBangz~1100-30Dayal & Ferrara 2018z~30-5

Hydrogen reionization End of Dark Ages

Epoch of Reionization: When ?

Gunn-Peterson troughs suggest reionization ending at z=5.2-6.0 Ultra Late Reionization (Fan et al. 2006; Keating et al. 2020; Becker et al. 2021; Bosman et al. 2021; Zhu et al. 2022; Gaikwad et al. 2023)

Gunn-Peterson effect

Planck 2020 result: τ =0.0506+/-0.0086 z_reion~7.0 Delta_z<1.1-2.8 Rapid process (Akrami et al. 2020; Reichardt et al. 2021)

Thomson scattering optical depth measured in CMB

=> 5.2 < z < 8.0

z_reion>5.2 z_reion<8.0 Fast and Ultra-Late Reionization

Production of ionizing radiation

$$\dot{N}_{\rm ion} = f_{\rm esc} \xi_{\rm ion} \rho_{\rm UV}$$

Ionization rate

$$\rho_{UV} = \int_{L_{min}}^{L_{max}} \phi(L) L dL$$

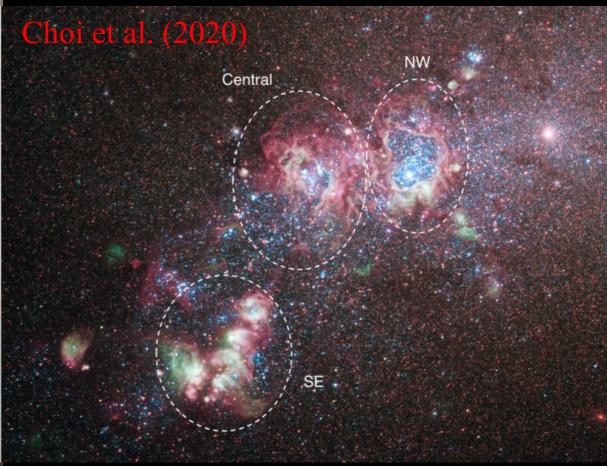
UV Luminosity Density at 1450 Angstrom rest frame

LyC photons per unit UV Luminosity; L1450/L900 ratio.

Escape fraction of LyC photons Critical paramater: uncertain How to escape from the Galactic Labyrinths ?

Orthodox or heretic ?

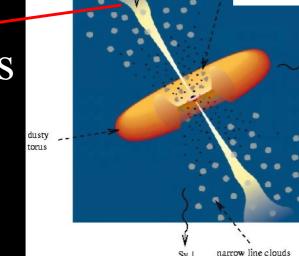
ESCAPE THE MINOTAUR'S MAZE



Daedalus and Icarus

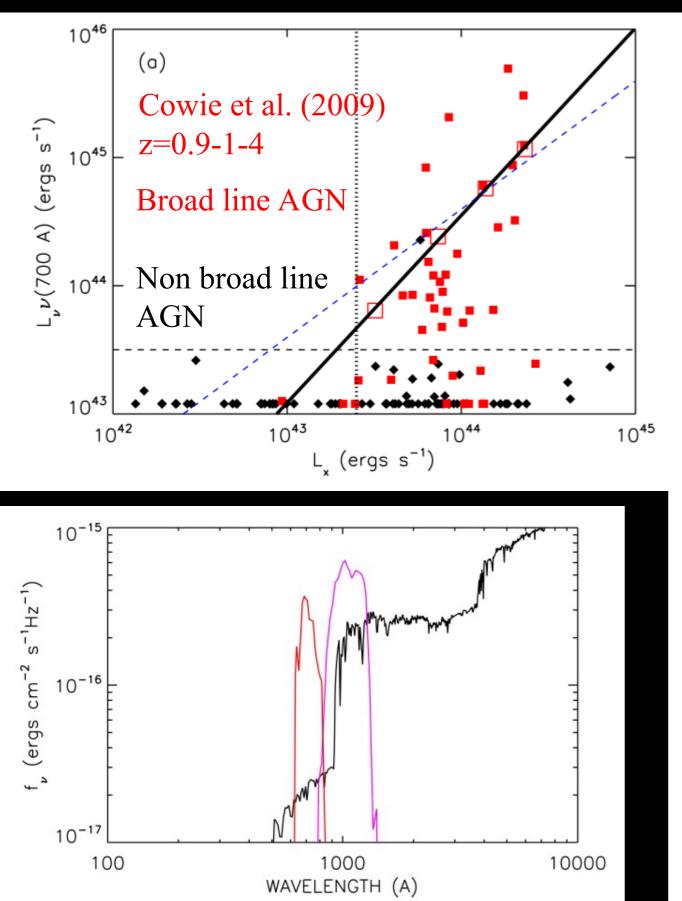
Orthodox

Flying easily like Daedalus and Icarus close to the stellar radiation with the risk of a big fallout ?

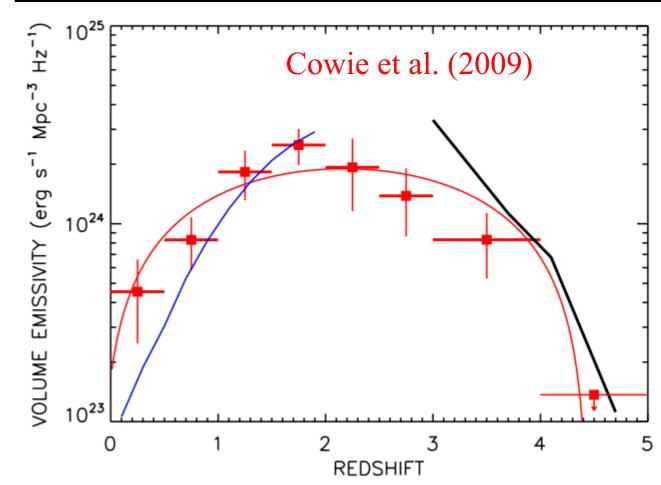

Theseus and Ariadne's wire

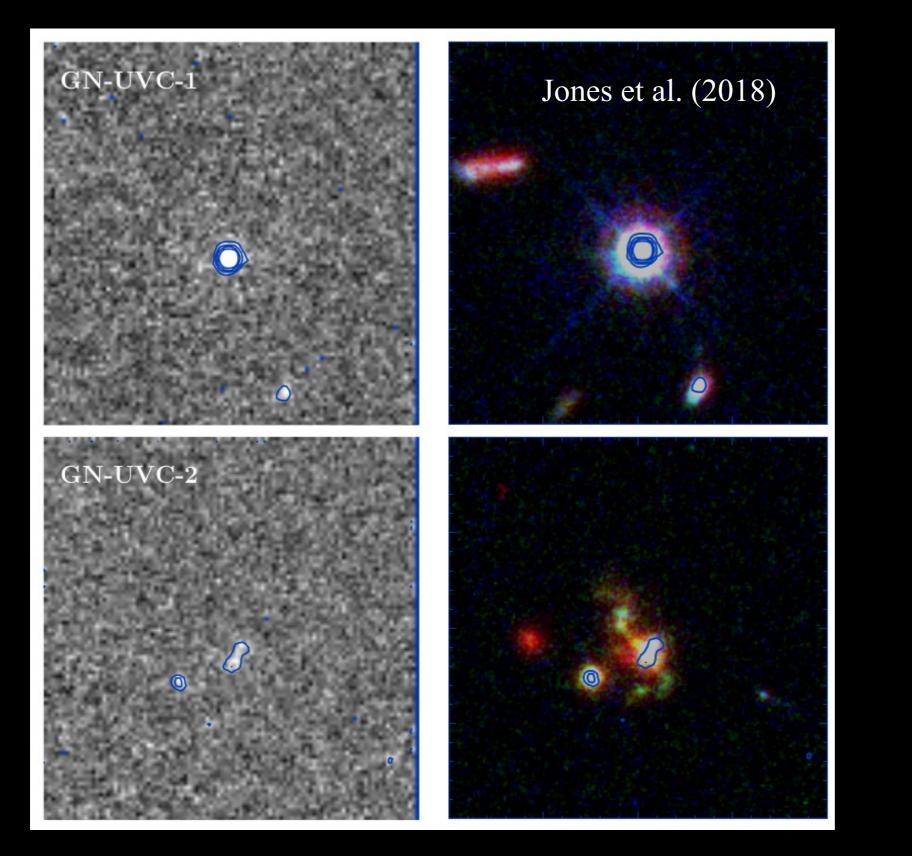
Following AGN Ariadne's wire like Theseus, and escaping from the Monster heart towards ionizing freedom ?

Heretic

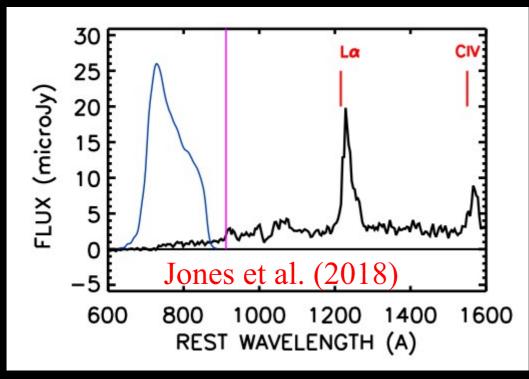


Ariadne's wire



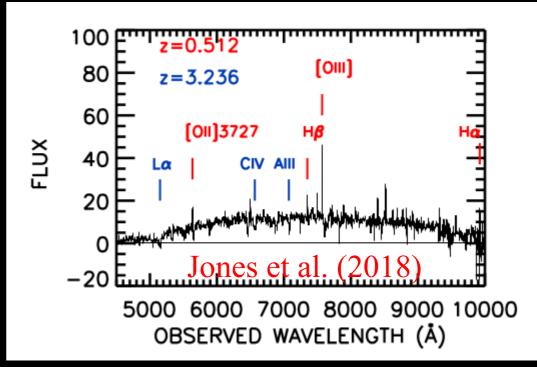

LyC fesc of AGN: imaging

Broad line AGN at z~1 show significant LyC escape fraction (~100%)

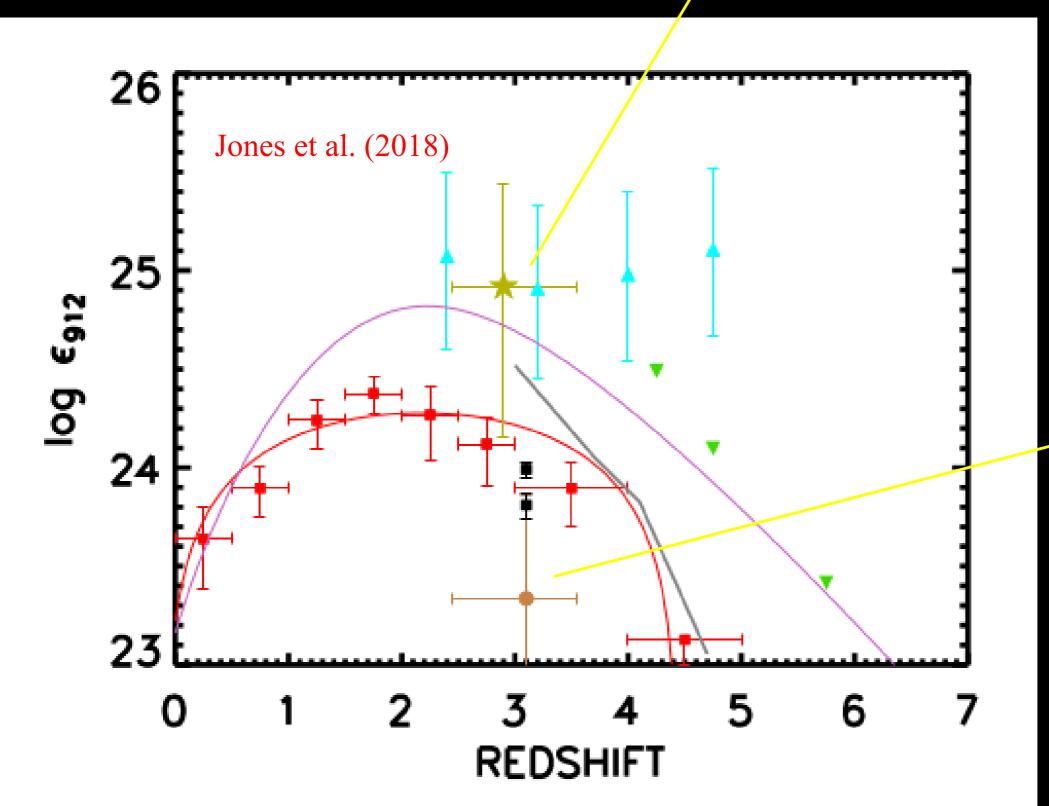


F275W F435W+F606W+F160W

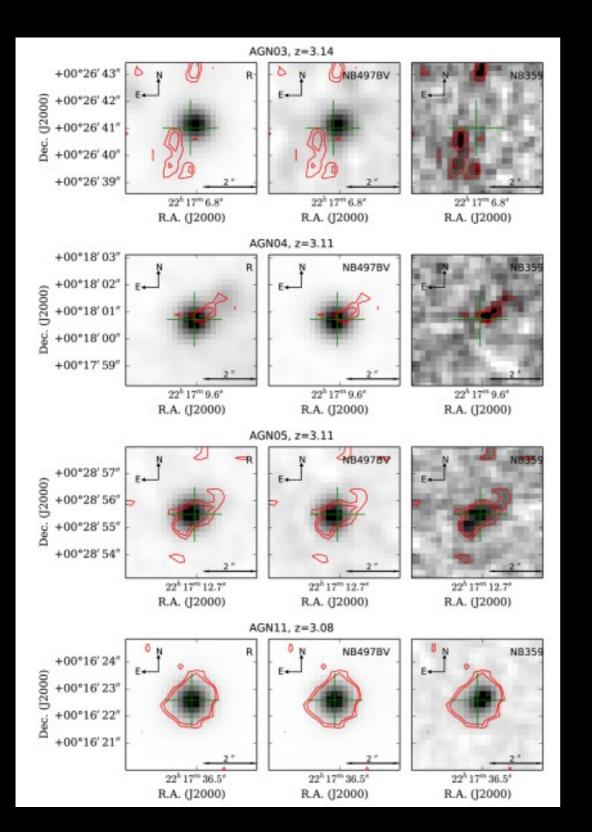
AGN

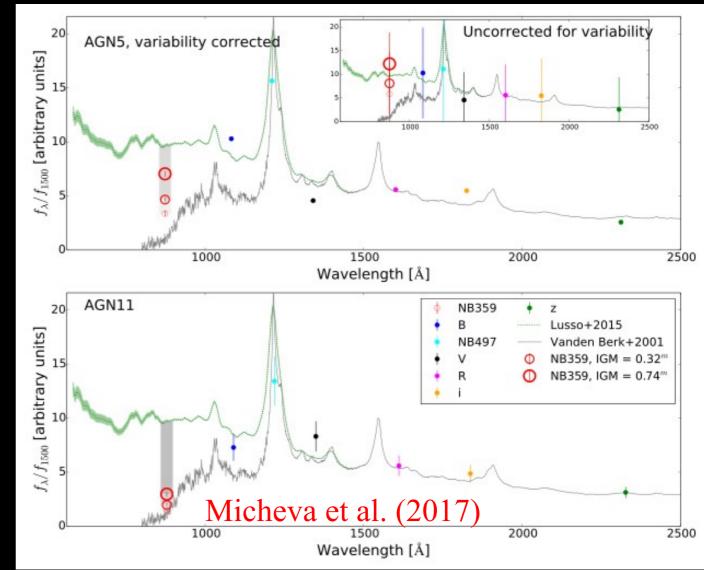

SFG

AGN


SFG

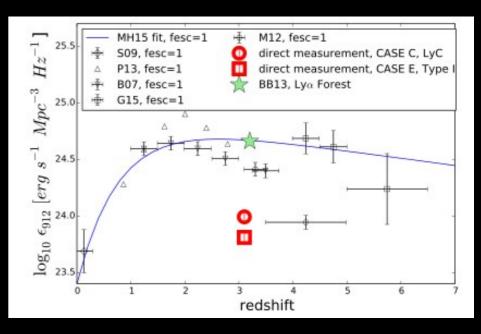
All the SFGs detected in LyC at $z\sim2-3$ by Jones et al. (2018) show contamination by low-z interlopers. The only confirmed LyC detection is from an AGN at z=2.5.


AGNs dominate the ionizing emissivity at z~3. Negligible Contribution by SFGs.

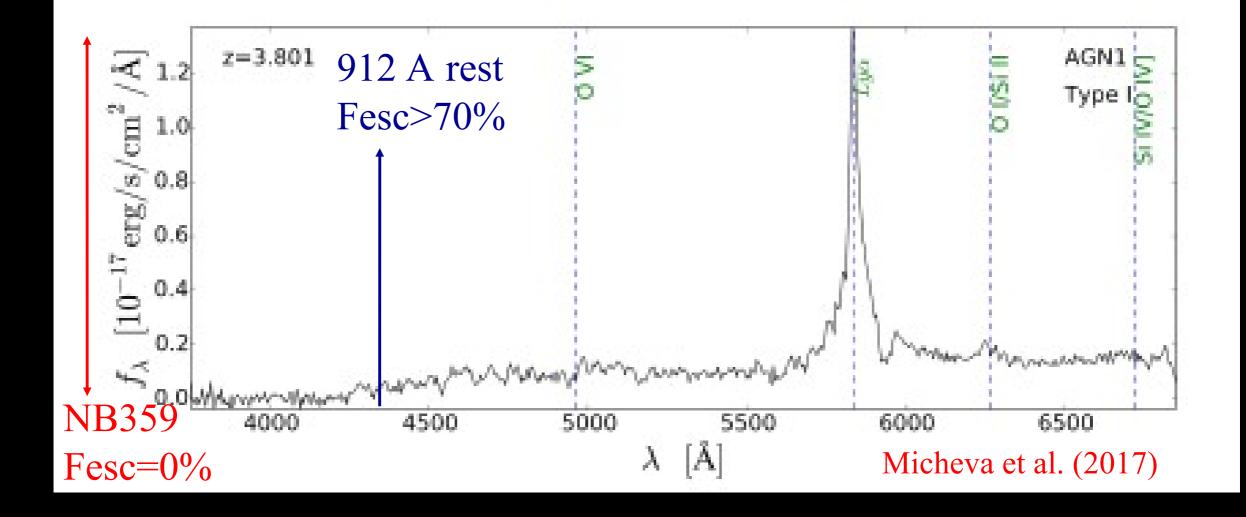


- SFG

LyC fesc of faint AGN

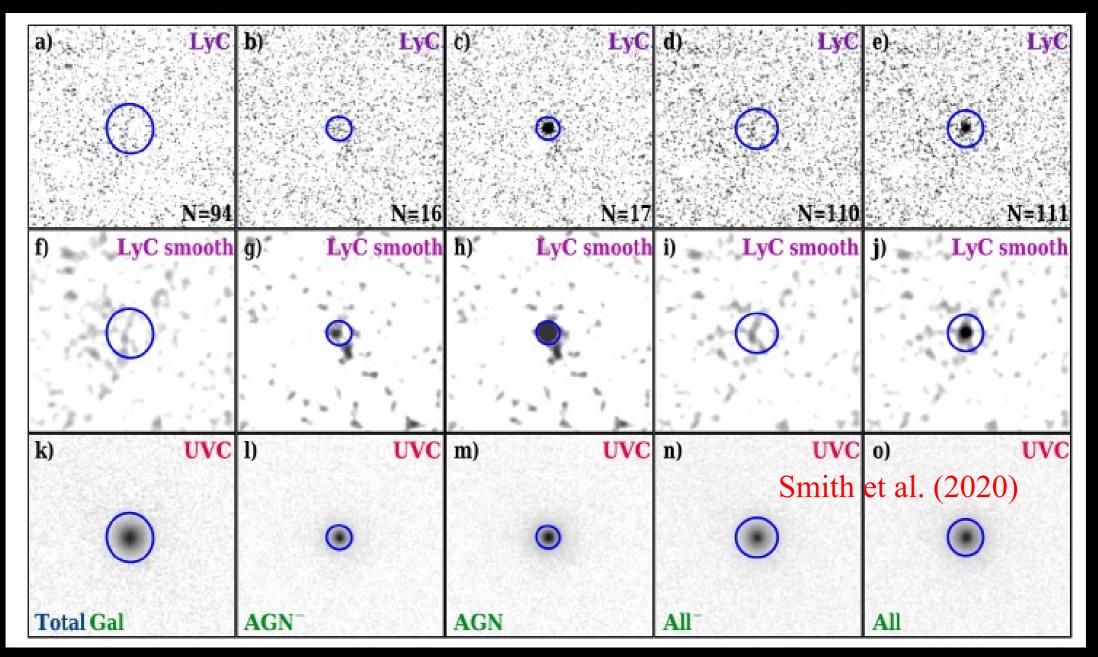


Low escape fraction of faint z>3 AGN ? Fesc~25%

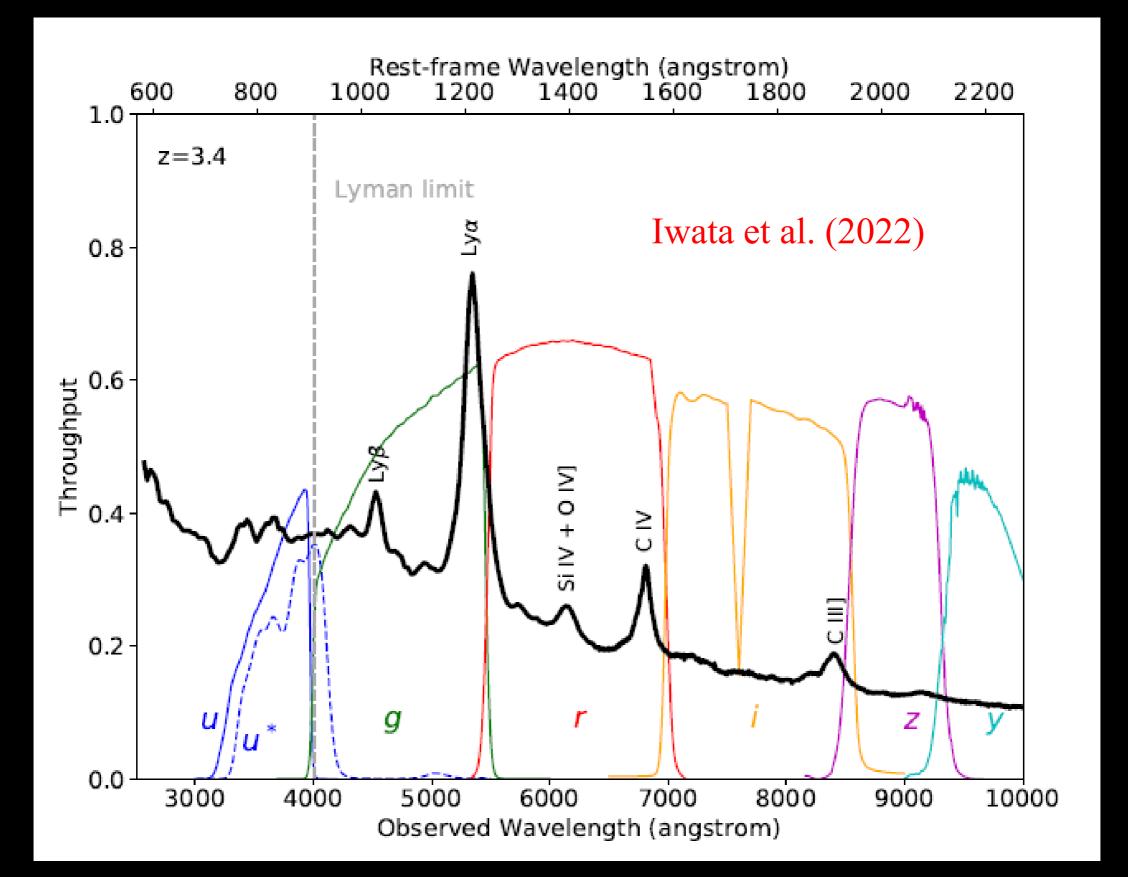


ID	FWHM	R	$R(1.2 \operatorname{arcsec})$	NB359	NB359(1.2 arcsec)	(f ₁₅₀₀ /f ₉₀₀) _{obs}	B-V	NB359-R	$\beta(\mathrm{UVslope})$	δr
AGN1	0.8	21.83	22.57				1.53		-1.46	
AGN2	0.8	24.75	25.52				0.69		-0.16	
AGN3	0.9	23.78	24.58	26.04 ± 0.20	28.11 ± 0.20	7.97 ± 1.42	1.18	2.25 ± 0.20	-2.47	0.8
AGN4	0.9	24.19	25.00	26.14	27.00 ± 0.12	6.06 ± 0.49	1.01	1.96	-2.41	0.5
AGN5	0.9	23.83	24.62	24.98	26.29	2.88 ± 0.19	-0.46	1.15	0.42	0.2
AGN6	0.9	24.22	25.03				0.73		-2.18	
AGN7	0.8	22.70	23.44				-0.18		-3.13	
AGN8	0.8	21.04	21.80				1.62		-2.34	
AGN9	0.9	25.91	26.79						0.76 ± 0.35	
AGN10	0.9	25.47	26.27				1.45		0.42 ± 0.17	
AGN11	0.8	21.42	22.16	24.09	24.96	11.72 ± 0.27	0.56	2.67	-1.94	0.1
AGN12	1.4	25.09	26.46				1.12		-2.39 ± 0.32	
AGN13	0.8	22.69	23.40	٦A	• 1	(0,1,7)	1.02		-0.60	
AGN14	1.2	24.53	25.69	M	icheva et al. (2017)	0.87		-0.33 ± 0.18	

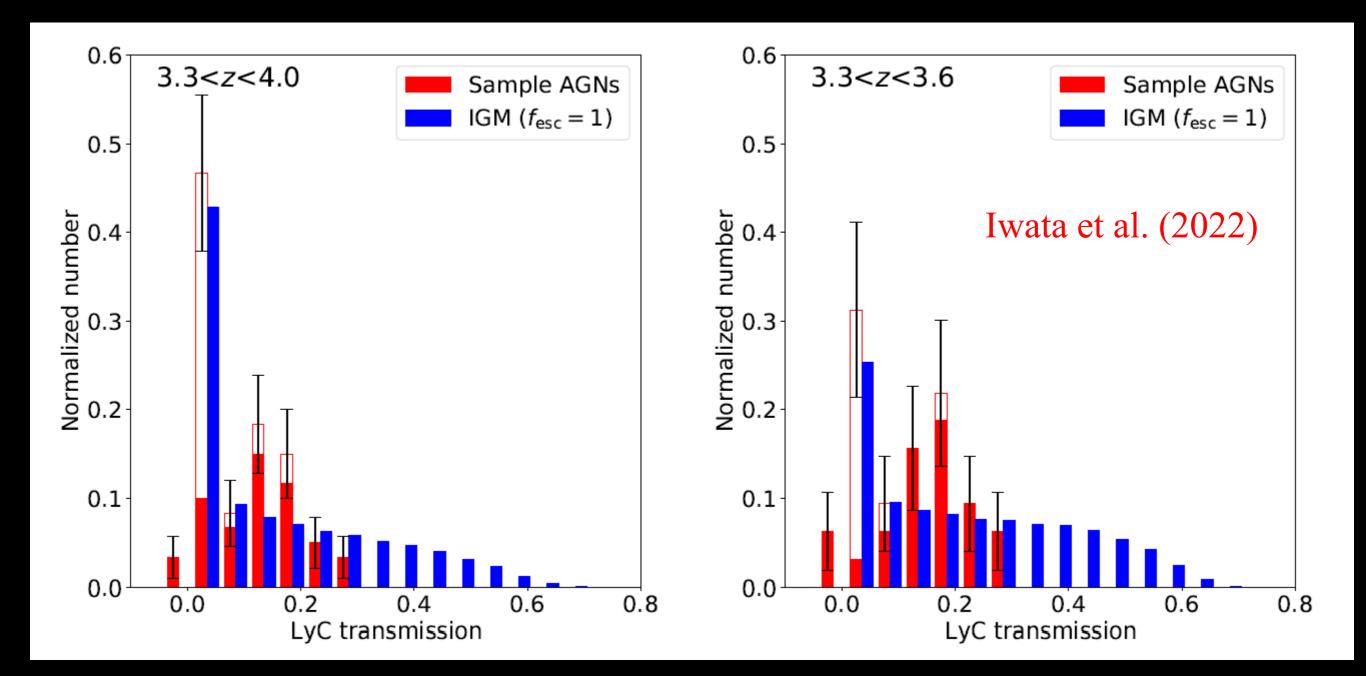
ID	λ_{eff}^{LyC} (Å)	$f_{\rm esc}^{\tau=0}$	$f_{\rm esc}^{\pi=0.32}$	$f_{\rm esc}^{\tau=0.74}$	$err(f_{esc})$
AGN3	867.1	< 0.008	< 0.011	< 0.016	
AGN5	873.5	0.35	0.48	0.73	0.30
AGN7	873.9	< 0.003	< 0.004	< 0.007	
AGN11	879.0	0.15	0.20	0.31	0.27


The contribution of AGNs to ionizing emissivity is 3-5 times lower than required.

NB359 (LyC) is at 750 A rest frame (proper distance=173 pMpc).


The Mean free path at z=3.8 is 45 pMpc.

LyC fesc of z~3 AGN



The stack of 17 AGN dominates the LyC production from $z\sim2.3-4.3$ by a factor of ~10 compared to all 94 galaxies without AGN. (See talk by R. Windhorst)

Low LyC fesc of faint AGN?

Faint High-z AGNs: low LyC fesc ?

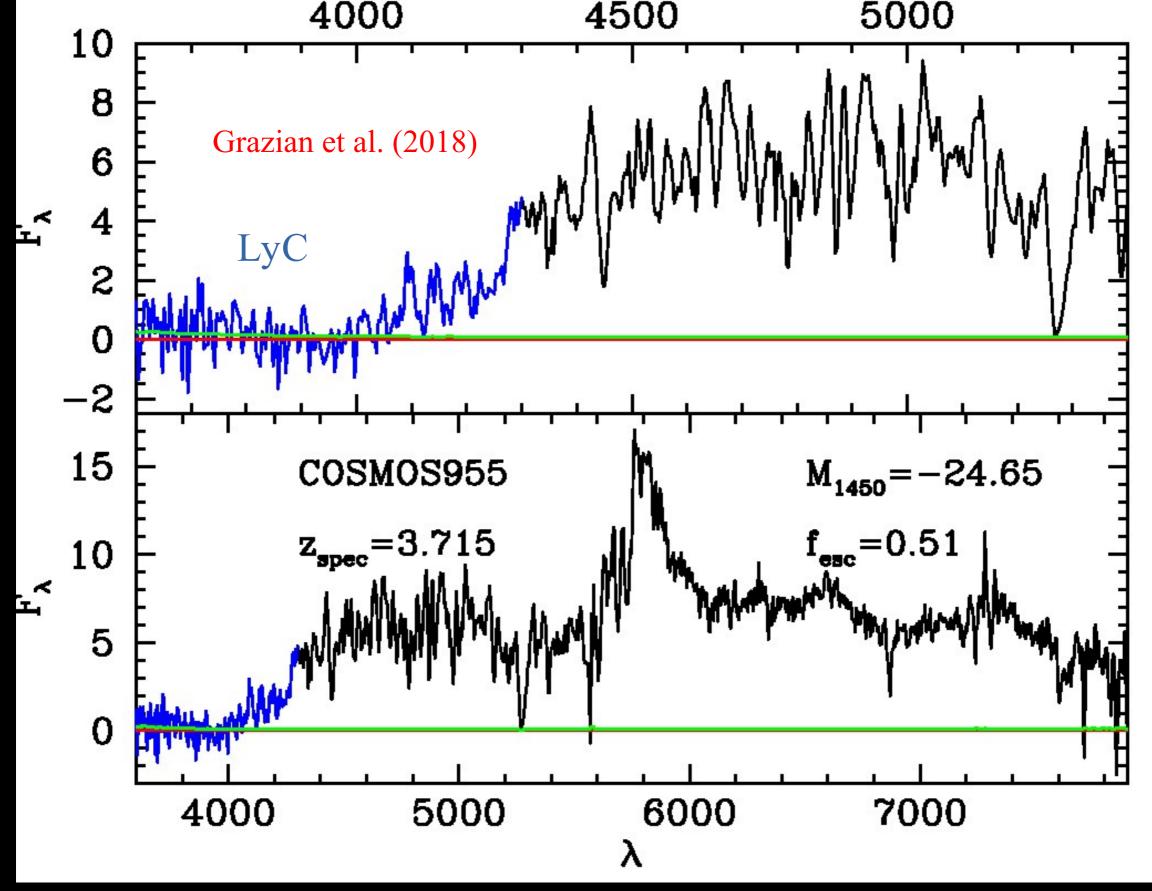
LyC fesc=25% for 94 faint (M1450>-24) AGNs at 3.3<z<4.0

						COSMOS				T.	x_{0} at al (2022)
ID	R.A.(J2000)	Decl.(J2000)	Redshift	M_{1450}	U-i	$t_{ m Lyc}$	Filter	Type	N/E^a	Ref. ⁰	vata et al. (2022)
C07	149.4729034	2.7933720	3.6095	-24.127	3.18 ± 0.01	0.116 ± 0.000	u	BLA	Ν	09,09	COSMOS_J095753.49+024736.1
C08	149.5337247	1.8091995	3.9860	-23.357	> 5.54	< 0.015	u	_	Ν	10,-	B18_0664641
C10	149.6258478	1.9812633	3.9600	-20.957	2.15 ± 0.12	0.339 ± 0.013	\boldsymbol{u}	BLA	\mathbf{E}	11,11	L450105
C11	149.6959527	2.6030866	3.3030	-21.326	> 3.95	< -0.007	\boldsymbol{u}	NLA	Ν	11,11	lid_1808
C12	149.7554065	2.7385464	3.5240	-22.169	> 4.55	< 0.032	\boldsymbol{u}	BLA	\mathbf{E}	12,09	COSMOS_J095901.31+024418.8
C13	149.7820781	2.4712961	3.3260	-21.819	> 4.33	< 0.003	u	BLA	Ν	11,11	L772453
C14	149.8432151	2.6590580	3.7480	-22.137	> 4.64	< 0.032	\boldsymbol{u}	BLA	Ν	10,10	B18_1730531
C15	149.8457518	2.4816180	3.3600	-21.927	> 4.42	< 0.022	\boldsymbol{u}	BLA	Ν	13, 13	M12_1511846
C16	149.8458637	2.8604351	3.6300	-22.878	> 5.13	< 0.019	\boldsymbol{u}	BLA	Ν	10,10	B18_1938843
C17	149.8494778	2.8652090	3.6860	-21.854	> 4.07	< 0.053	\boldsymbol{u}	NLA	\mathbf{E}	11,11	lid_2189
C18	149.8515634	2.2764026	3.3710	-22.412	2.45 ± 0.03	0.202 ± 0.001	u	BLA	Ν	12, 12	XMMC_149.85099+2.27609
C19	149.8696906	2.2940175	3.3450	-23.675	> 6.24	< -0.010	u	BLA	Ν	12, 12	XMMC_149.86981+2.29391
C20	149.8792145	2.2258072	3.6510	-23.017	> 5.42	< 0.015	u	BLA	Ν	12, 12	XMMC_149.87949+2.22567
C21	149.8861225	2.2759378	3.3350	-21.944	> 4.52	< 0.005	\boldsymbol{u}	NLA	\mathbf{E}	11,11	cid_1134
C22	149.8942870	2.4329414	3.3600	-21.393	> 3.88	< 0.043	u	BLA	Ν	14, 13	L747071
C23	149.9173822	2.8820631	3.3170	-21.920	2.40 ± 0.05	0.178 ± 0.006	u	BLA	Ν	14, 14	L1040434
C24	150.0043858	2.0388885	3.4990	-24.064	3.24 ± 0.01	0.104 ± 0.000	u	BLA	Ν	12, 12	XMMC_150.00412+2.03904
C25	150.0229091	1.5862527	3.3430	-21.297	2.49 ± 0.08	0.182 ± 0.004	u	NLA	\mathbf{E}	11, 11	lid_1244
C26	150.0426727	1.8721154	3.3600	-21.882	> 3.81	< 0.047	u	BLA	Ν	13, 13	PRIMUS_110535
C27	150.0968272	2.0214452	3.5460	-20.424	> 2.68	< 0.180	u	NLA	\mathbf{E}	15, 15	CCOS1505
C28	150.1139556	2.6067261	3.9490	-20.793	> 2.72	< 0.198	u	BLA	\mathbf{E}	14, 14	L862385
C29	150.1164373	1.9638991	3.4100	-21.686	> 4.01	< 0.050	u	BLA	Ν	13, 13	M12_0790476
C30	150.1303590	2.4659748	3.8650	-22.764	> 4.80	< 0.028	u	BLA	Ν	14, 13	L768961
C31	150.2088406	2.4819033	3.3330	-25.774	> 8.15	< -0.027	u	BLA	Ν	12, 12	XMMC_150.20888+2.48202
C32	150.2089844	2.4384687	3.7150	-24.470	> 6.64	< 0.005	\boldsymbol{u}	BLA	Ν	12,12	XMMC_150.20929+2.43844
C33	150.2407920	2.6590184	3.3560	-22.578	2.56 ± 0.02	0.172 ± 0.001	\boldsymbol{u}	BLA	Ν	12,09	XMMC_150.24087+2.65873
C34	150.2518296	1.5535407	3.7470	-21.494	> 3.31	< 0.108	u	BLA	Ν	14, 14	L179154
C35	150.2595269	2.3761549	3.7170	-23.402	4.66 ± 0.10	0.031 ± 0.000	u	BLA	Ν	11,13	M12_1208399
C36	150.2630206	2.5208549	3.7580	-21.376	> 2.91	< 0.158	\boldsymbol{u}	BLA	Ν	14, 14	C1432719
C37	150.2671997	1.9096446	3.8460	-20.376	> 2.74	< 0.189	u	BLA	\mathbf{E}	$14,\!14$	L405213
C38	150.2715836	1.6138443	3.5120	-20.122	> 2.67	< 0.177	u	NLA	Ν	11,11	cid_1656
C39	150.2972445	2.1487816	3.3280	-25.123	4.48 ± 0.01	-0.001 ± 0.007	\boldsymbol{u}	BLA	Ν	12,12	XMMC_150.29764+2.14830
C40	150.3007581	2.3005428	3.4980	-21.426	> 3.98	< 0.053	\boldsymbol{u}	NLA	\mathbf{E}	15, 15	CCOS784
C41	150.3025734	1.8520637	3.8400	-21.044	> 3.42	< 0.101	\boldsymbol{u}	BLA	Ν	13, 13	L368476
C42	150.3060182	1.7616025	3.3100	-20.338	> 3.01	< 0.075	\boldsymbol{u}	NLA	\mathbf{E}	11,11	cid_3293
C43	150.3445675	1.6359393	3.4820	-19.177	> 1.69	< 0.431	\boldsymbol{u}	NLA	\mathbf{E}	11,11	cid_1672
C44	150.3647089	2.1437853	3.3280	-22.050	> 3.72	< 0.032	u	BLA	\mathbf{E}	14,12	L554731
C45	150.3835833	2.0747463	3.8590	-20.999	> 3.19	< 0.125	u	_	\mathbf{E}	16,-	CCOS879
C46	150.3941052	2.7178277	3.4870	-21.600	1.55 ± 0.03	0.492 ± 0.006	u	NLA	\mathbf{E}	11,11	lid_4112
C47	150.4029080	1.8788719	3.5710	-20.394	1.84 ± 0.08	0.393 ± 0.012	u	NLA	\mathbf{E}	11,11	cid_2949
C49	150.4399178	2.7034886	3.4650	-22.510	2.79 ± 0.03	0.155 ± 0.001	u	BLA	Ν	09,09	COSMOS_J100145.58+024212.6

/ Fesc=74% Grazian+18

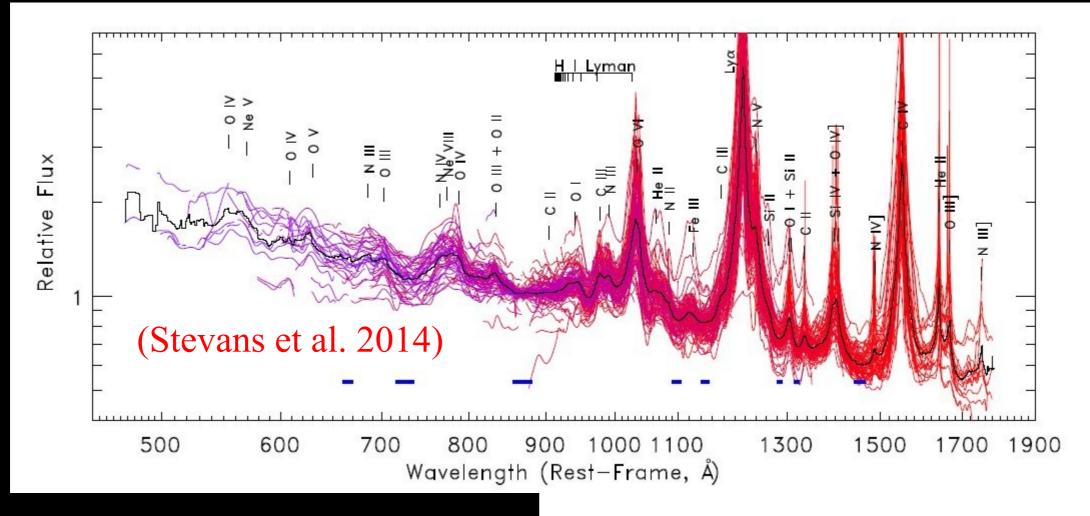
						COSMOS				т	wate at al (2022)
ID	R.A.(J2000)	Decl.(J2000)	Redshift	M_{1450}	U-i	true	Filter	Type	N/E^a	Ref. ^b	vata et al. (2022)
	· · · ·					tLyc	1 Hoer				
C07	149.4729034	2.7933720	3.6095	-24.127	3.18 ± 0.01	0.116 ± 0.000	u	BLA	Ν	09,09	COSMOS_J095753.49+024736.1
C08	149.5337247	1.8091995	3.9860	-23.357	> 5.54	< 0.015	u	_	Ν	10,-	B18_0664641
C10	149.6258478	1.9812633	3.9600	-20.957	2.15 ± 0.12	0.339 ± 0.013	u	BLA	\mathbf{E}	11,11	L450105
C11	149.6959527	2.6030866	3.3030	-21.326	> 3.95	< -0.007	\boldsymbol{u}	NLA	Ν	11,11	lid_1808
C12	149.7554065	2.7385464	3.5240	-22.169	> 4.55	< 0.032	u	BLA	\mathbf{E}	12,09	COSMOS_J095901.31+024418.8
C13	149.7820781	2.4712961	3.3260	-21.819	> 4.33	< 0.003	u	BLA	Ν	11,11	L772453
C14	149.8432151	2.6590580	3.7480	-22.137	> 4.64	< 0.032	u	BLA	Ν	10,10	B18_1730531
C15	149.8457518	2.4816180	3.3600	-21.927	> 4.42	< 0.022	u	BLA	Ν	13, 13	M12_1511846
C16	149.8458637	2.8604351	3.6300	-22.878	> 5.13	< 0.019	u	BLA	Ν	10,10	B18_1938843
C17	149.8494778	2.8652090	3.6860	-21.854	> 4.07	< 0.053	u	NLA	\mathbf{E}	11, 11	lid_2189
C18	149.8515634	2.2764026	3.3710	-22.412	2.45 ± 0.03	0.202 ± 0.001	u	BLA	Ν	12,12	XMMC_149.85099+2.27609
C19	149.8696906	2.2940175	3.3450	-23.675	> 6.24	< -0.010	u	BLA	Ν	12,12	XMMC_149.86981+2.29391
C20	149.8792145	2.2258072	3.6510	-23.017	> 5.42	< 0.015	u	BLA	Ν	12, 12	XMMC_149.87949+2.22567
C21	149.8861225	2.2759378	3.3350	-21.944	> 4.52	< 0.005	\boldsymbol{u}	NLA	\mathbf{E}	11, 11	cid_1134
C22	149.8942870	2.4329414	3.3600	-21.393	> 3.88	< 0.043	\boldsymbol{u}	BLA	Ν	14, 13	L747071
C23	149.9173822	2.8820631	3.3170	-21.920	2.40 ± 0.05	0.178 ± 0.006	\boldsymbol{u}	BLA	Ν	14, 14	L1040434
C24	150.0043858	2.0388885	3.4990	-24.064	3.24 ± 0.01	0.104 ± 0.000	\boldsymbol{u}	BLA	Ν	12, 12	XMMC_150.00412+2.03904
C25	150.0229091	1.5862527	3.3430	-21.297	2.49 ± 0.08	0.182 ± 0.004	\boldsymbol{u}	NLA	\mathbf{E}	11, 11	lid_1244
C26	150.0426727	1.8721154	3.3600	-21.882	> 3.81	< 0.047	\boldsymbol{u}	BLA	Ν	13, 13	PRIMUS_110535
C27	150.0968272	2.0214452	3.5460	-20.424	> 2.68	< 0.180	\boldsymbol{u}	NLA	\mathbf{E}	15, 15	CCOS1505
C28	150.1139556	2.6067261	3.9490	-20.793	> 2.72	< 0.198	\boldsymbol{u}	BLA	\mathbf{E}	14, 14	L862385
C29	150.1164373	1.9638991	3.4100	-21.686	> 4.01	< 0.050	u	BLA	Ν	13, 13	M12_0790476
C30	150.1303590	2.4659748	3.8650	-22.764	> 4.80	< 0.028	\boldsymbol{u}	BLA	Ν	14, 13	L768961
C31	150.2088406	2.4819033	3.3330	-25.774	> 8.15	< -0.027	\boldsymbol{u}	BLA	Ν	12, 12	XMMC_150.20888+2.48202
C32	150.2089844	2.4384687	3.7150	-24.470	> 6.64	< 0.005	\boldsymbol{u}	BLA	Ν	12, 12	XMMC_150.20929+2.43844
C33	150.2407920	2.6590184	3.3560	-22.578	2.56 ± 0.02	0.172 ± 0.001	u	BLA	Ν	12,09	XMMC_150.24087+2.65873
C34	150.2518296	1.5535407	3.7470	-21.494	> 3.31	< 0.108	\boldsymbol{u}	BLA	Ν	14, 14	L179154
C35	150.2595269	2.3761549	3.7170	-23.402	4.66 ± 0.10	0.031 ± 0.000	\boldsymbol{u}	BLA	Ν	11,13	M12_1208399
C36	150.2630206	2.5208549	3.7580	-21.376	> 2.91	< 0.158	\boldsymbol{u}	BLA	Ν	14, 14	C1432719
C37	150.2671997	1.9096446	3.8460	-20.376	> 2.74	< 0.189	u	BLA	\mathbf{E}	14, 14	L405213
C38	150.2715836	1.6138443	3.5120	-20.122	> 2.67	< 0.177	u	NLA	Ν	11,11	cid_1656
C39	150.2972445	2.1487816	3.3280	-25.123	4.48 ± 0.01	-0.001 ± 0.007	u	BLA	Ν	12, 12	XMMC_150.29764+2.14830
C40	150.3007581	2.3005428	3.4980	-21.426	> 3.98	< 0.053	u	NLA	\mathbf{E}	15, 15	CCOS784
C41	150.3025734	1.8520637	3.8400	-21.044	> 3.42	< 0.101	\boldsymbol{u}	BLA	Ν	13,13	L368476
C42	150.3060182	1.7616025	3.3100	-20.338	> 3.01	< 0.075	\boldsymbol{u}	NLA	\mathbf{E}	11,11	cid_3293
C43	150.3445675	1.6359393	3.4820	-19.177	> 1.69	< 0.431	u	NLA	\mathbf{E}	11,11	cid_1672
C44	150.3647089	2.1437853	3.3280	-22.050	> 3.72	< 0.032	u	BLA	\mathbf{E}	14,12	L554731
C45	150.3835833	2.0747463	3.8590	-20.999	> 3.19	< 0.125	\boldsymbol{u}	_	\mathbf{E}	16,-	CCOS879
C46	150.3941052	2.7178277	3.4870	-21.600	1.55 ± 0.03	0.492 ± 0.006	\boldsymbol{u}	NLA	\mathbf{E}	11,11	lid_4112
C47	150.4029080	1.8788719	3.5710	-20.394	1.84 ± 0.08	0.393 ± 0.012	u	NLA	\mathbf{E}	11,11	cid_2949
C49	150.4399178	2.7934886	3.4650	-22.510	2.79 ± 0.03	0.155 ± 0.001	u	BLA	Ν	09,09	COSMOS_J100145.58+024212.6

Fesc=51% Grazian+18

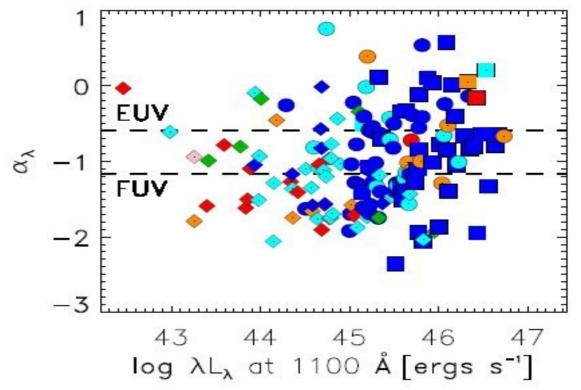

Fesc=51% Grazian+18

Fesc=78% Grazian+18

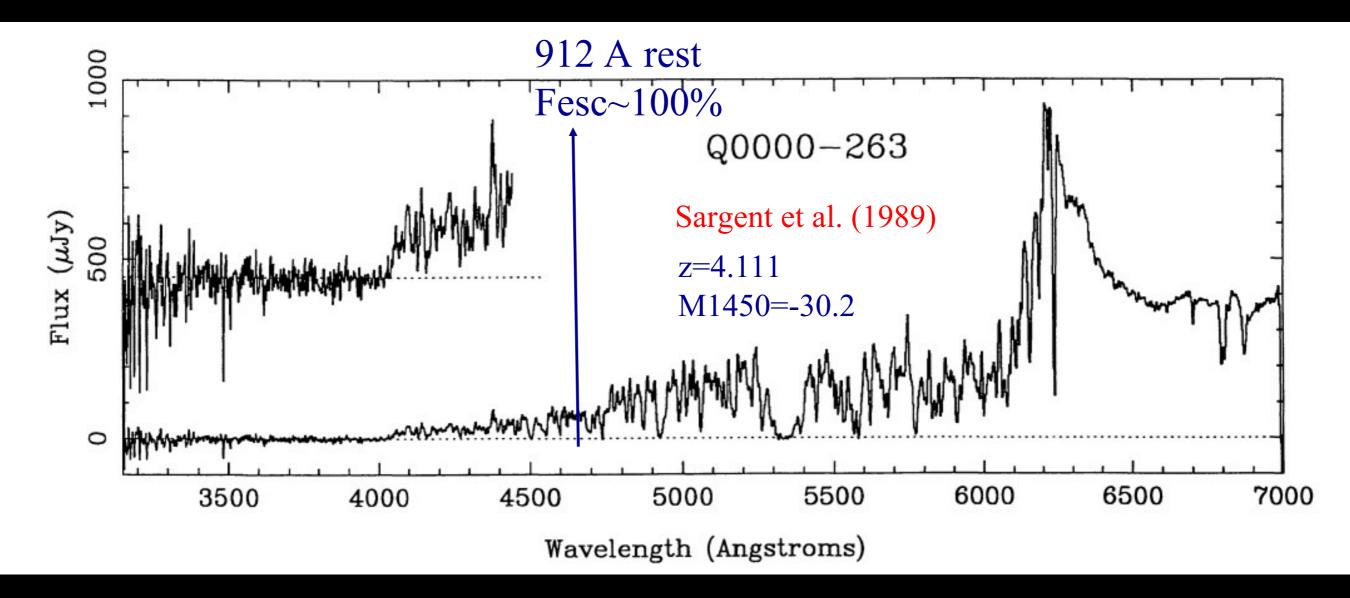
						COSMOS				Ī	wata et al. (2022)
ID	R.A.(J2000)	Decl.(J2000)	Redshift	M_{1450}	U-i	$t_{ m Lyc}$	Filter	Type	N/E^a	$\operatorname{Ref.}^{b}$	Designation
C50	150.4549406	1.9673839	3.4710	-21.548	> 3.96	< 0.053	\boldsymbol{u}	BLA	Ν	11,11	L441487
C51	150.5508002	2.6828885	3.5600	-21.818	> 4.11	< 0.048	\boldsymbol{u}	BLA	Ν	13,13	M12_1628943
C52	150.6384404	2.3913200	3.6500	-23.195	> 5.04	< 0.021	\boldsymbol{u}	BLA	Ν	13,13	M12_1159815
C53	150.7037829	2.3699723	3.7490	-23.966	3.28 ± 0.02	0.112 ± 0.000	\boldsymbol{u}	BLA	Ν	12,12	XMMC_150.70394+2.36961
C54	150.7170733	1.9301231	3.5675	-22.732	1.23 ± 0.01	0.694 ± 0.003	\boldsymbol{u}	BLA	Е	11,11	L419634
C55	150.7355581	2.1995513	3.4970	-25.257	3.14 ± 0.00	0.063 ± 0.006	u^*	BLA	Ν	11,12	lid_1710
C56	150.7371767	2.7225658	3.3020	-23.399	2.29 ± 0.01	0.186 ± 0.009	\boldsymbol{u}	BLA	Ν	12,09	COSMOS_J100256.92+024321.2
C57	150.7822171	2.2850682	3.6260	-23.993	3.79 ± 0.03	0.046 ± 0.001	u^*	BLA	Ν	10,10	B18_0899256
C59	150.8013187	1.6574845	3.7720	-23.212	> 5.63	< 0.013	\boldsymbol{u}	_	Ν	10,-	B18_0247934
C60	150.9112639	1.9448424	3.6800	-24.963	4.43 ± 0.02	0.038 ± 0.000	\boldsymbol{u}	BLA	Ν	03,03	VVDSWIDE:100359356
C61	150.9430180	1.3197523	3.5570	-24.265	> 6.63	< 0.005	\boldsymbol{u}	BLA	Ν	03,03	VVDSWIDE:100105943
C62	151.2614791	1.4073308	3.4035	-25.349	3.07 ± 0.00	0.117 ± 0.000	\boldsymbol{u}	BLA	Ν	02,02	SDSS100502.75+012426.3


Name Iwata+22 Grazian+18 C07 fesc=19% fesc=74%

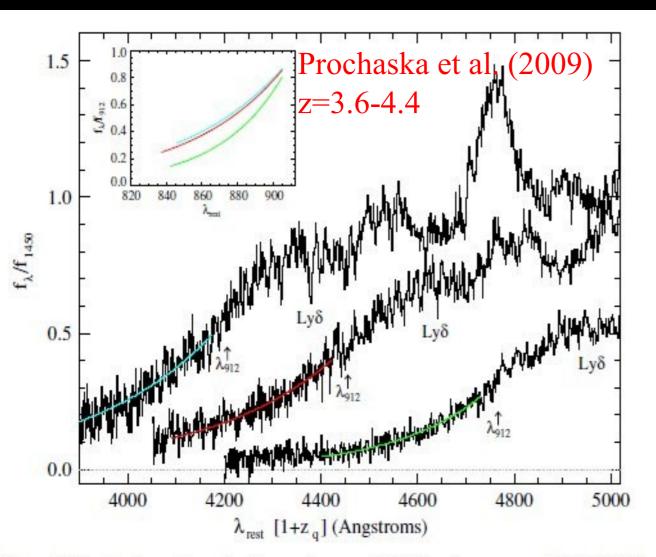
- C32 fesc<1% fesc=51%
- C35 fesc=5% fesc=51%
- C53 fesc=18% fesc=78%

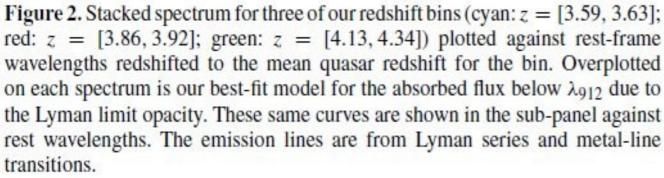

Name Iwata+22 Grazian+18 C32 fesc<1% fesc=51%

AGN LyC fesc from spectra



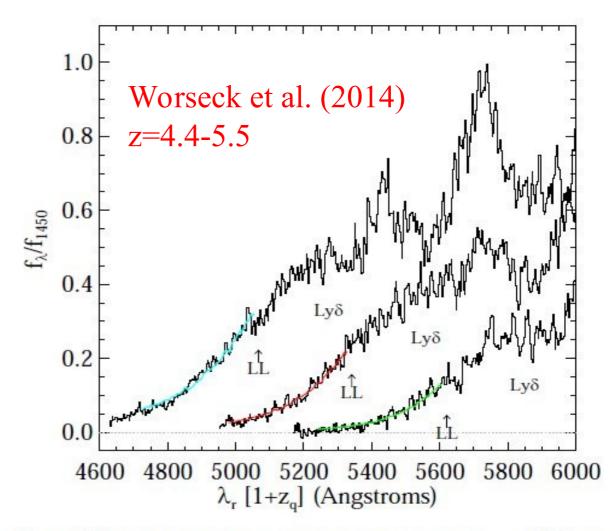
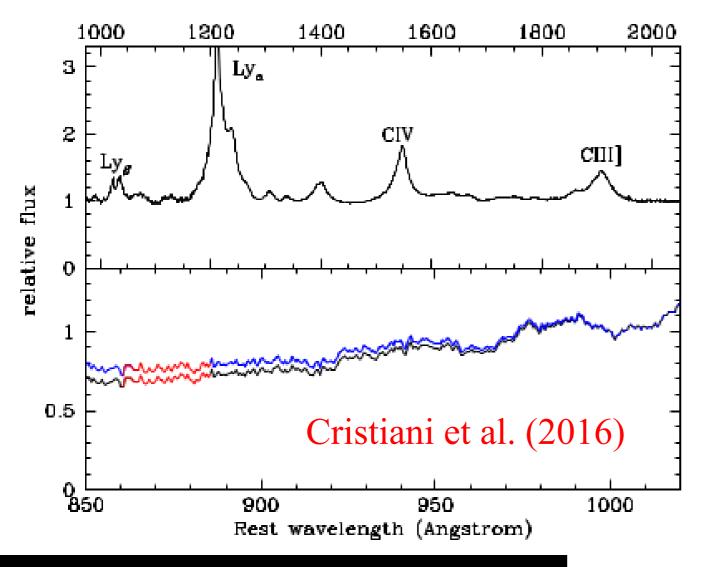
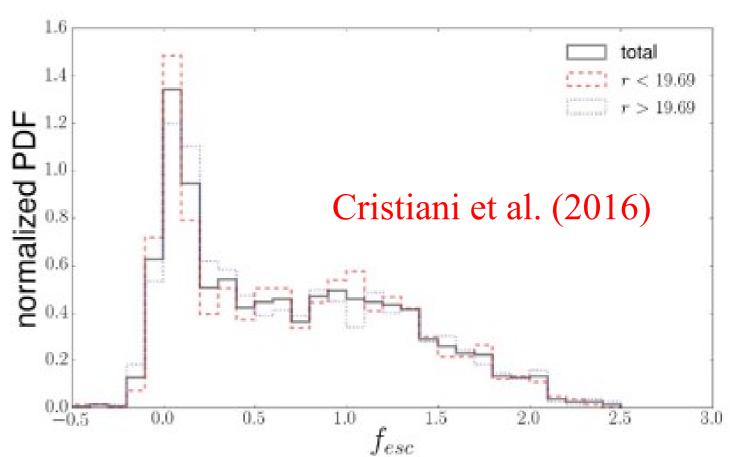
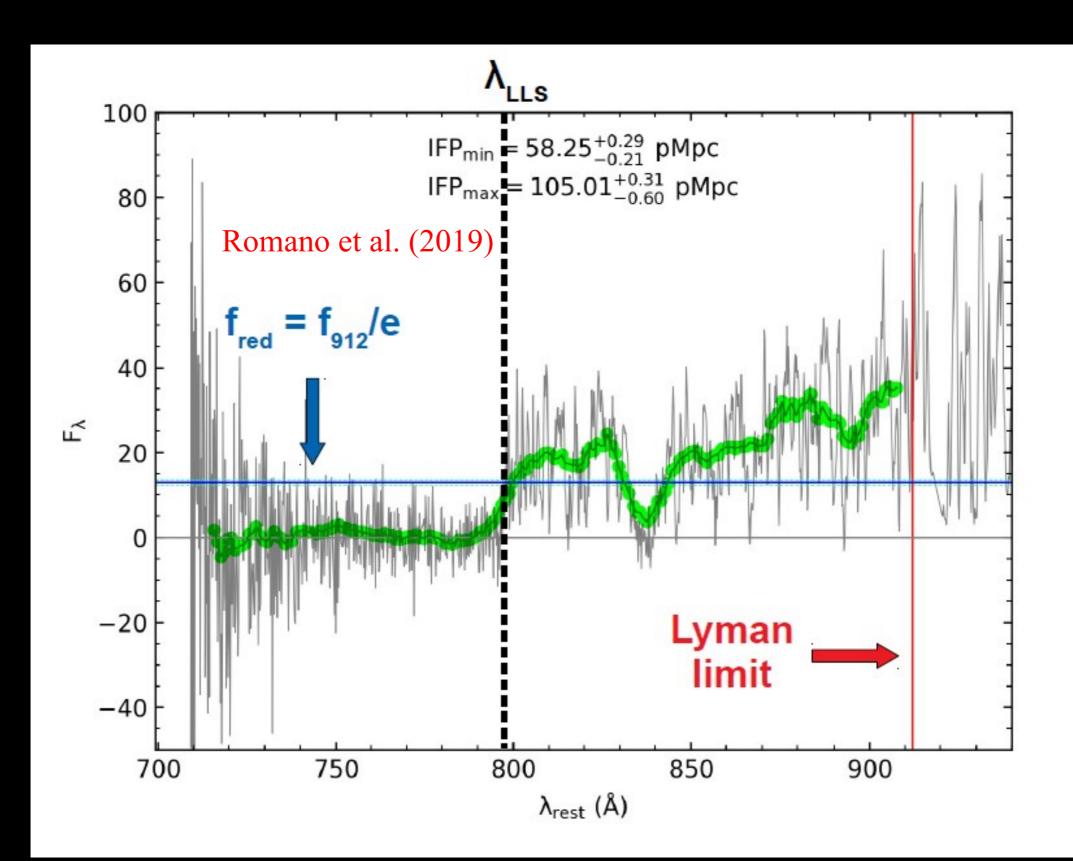
Stevans et al. (2014) find significant LyC emission in 159 low-luminosity AGNs at z<1.5

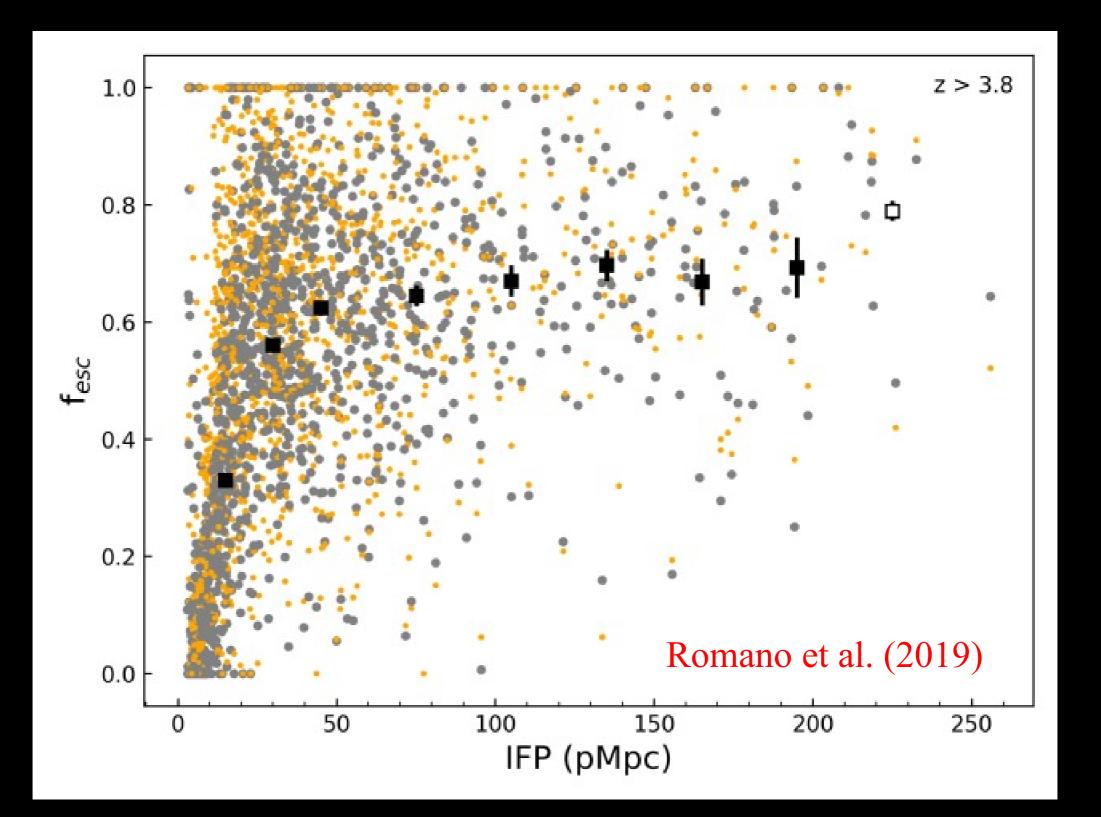

(both type 1 and type 1.8-1.9 AGNs)

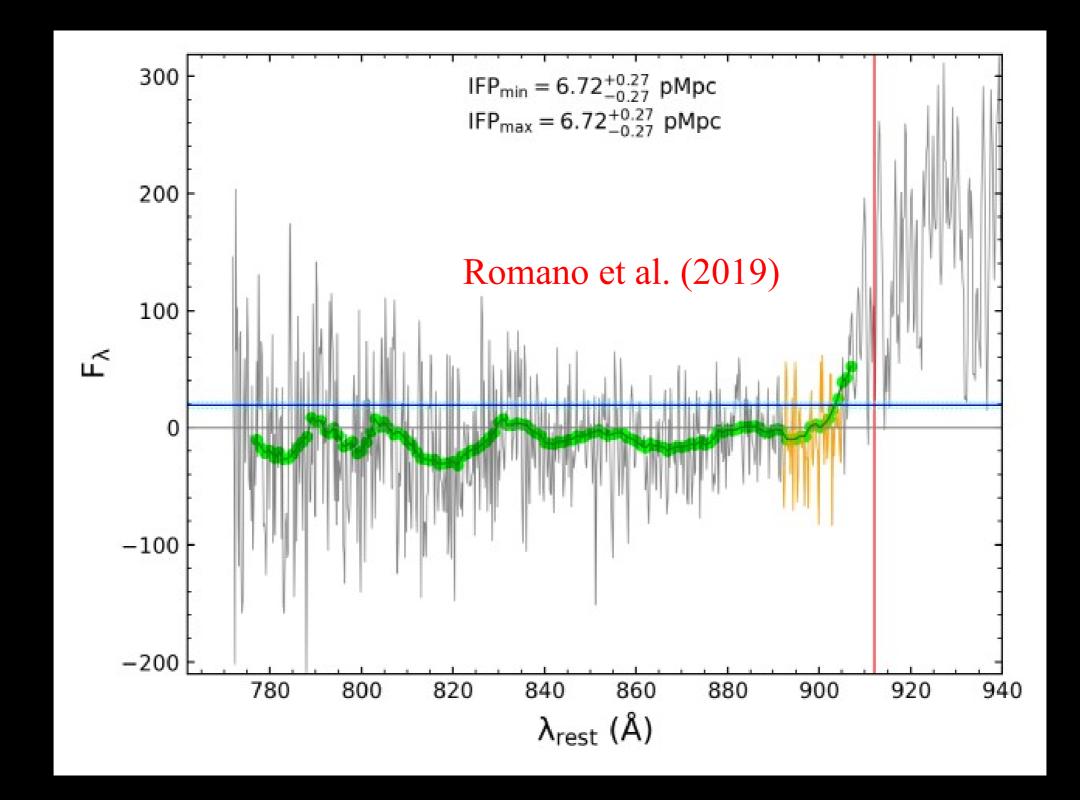


Very bright QSOs show high fesc

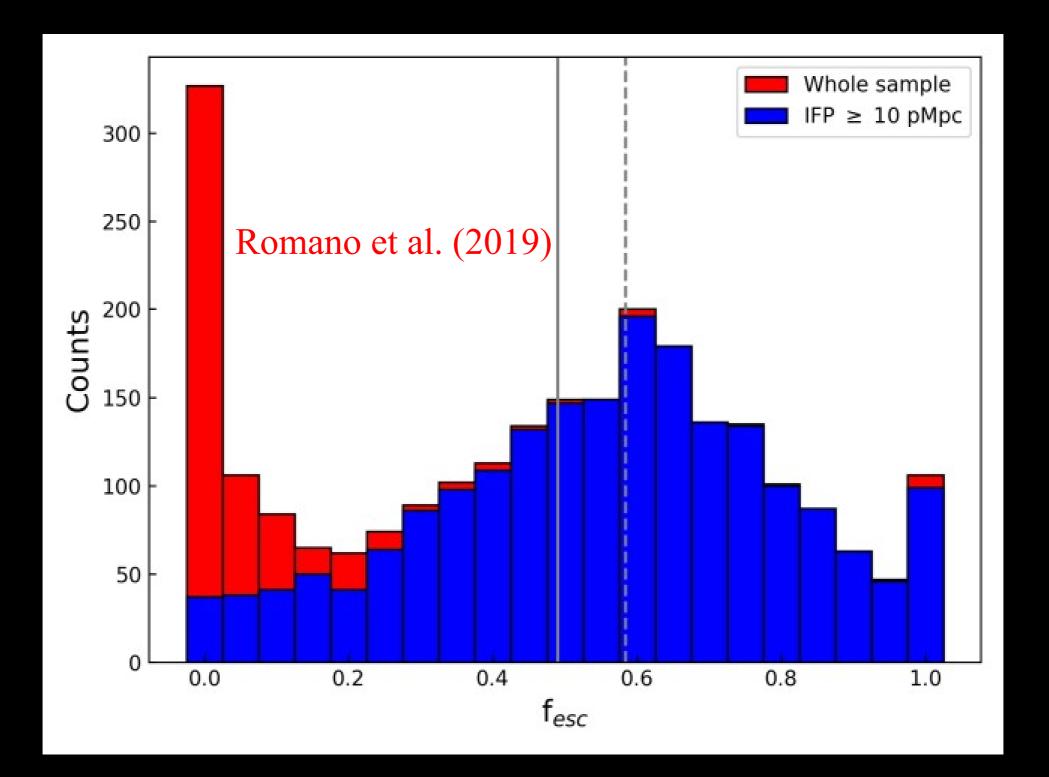
LyC emission of high-z QSOs Bright high-z QSOs are strong LyC emitters Direct detection of LyC up to z=5.5

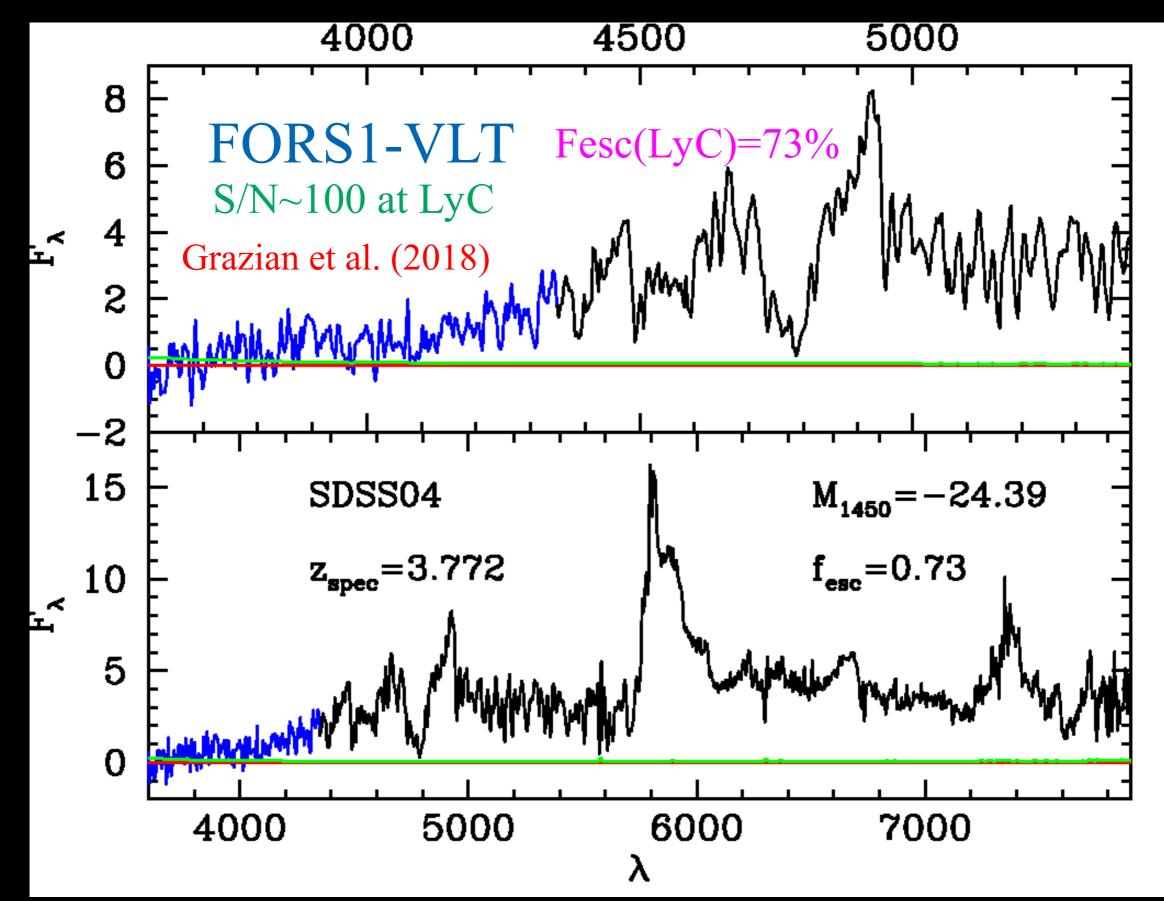






Figure 6. Stacked normalized rest-frame quasar spectra from the GGG survey generated for three redshift intervals: $z_{\rm em} = [4.4, 4.7]$, [4.7, 5.0], and [5.0, 5.5]. These spectra are plotted in a pseudo-observer frame defined as $\lambda_{\rm r} (1 + z_{\rm q})$ with, $z_{\rm q}$ the average redshift of the quasars in each interval. The Ly δ emission (strongly affected by IGM absorption for the two high-z bins) and the onset of the Lyman limit are marked for each stacked spectrum. Ly β and Ly γ emission lines of the background quasars are clearly visible. Overplotted on these stacked spectra are the best-fitting models which provide measurements for the mean free path $\lambda_{\rm mfp}^{912}$.



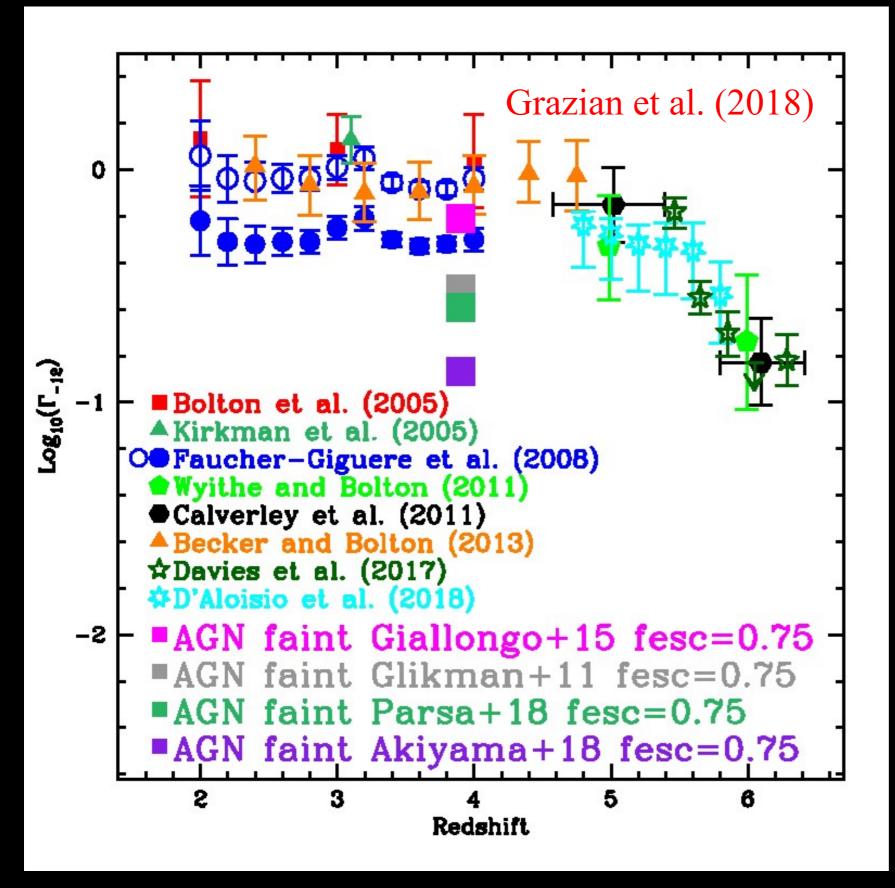
LyC fesc>=75% for QSOs at 3.6<z<4.0 and M1450<-26





QSOs with short mean free path (MFP) usually show low escape fraction. Associated or intervening absorber ????


The LyC Escape Fraction of faint AGNs


Name	z_{spec}^{new}	$f_{esc}(LyC)$	S/N	M_{1450}
SDSS36	4.047	0.81	87	-25.14
SDSS32	3.964	0.86	33	-25.13
COSMOS775	3.609	0.74	31	-24.14
SDSS37	4.173	1.00	121	-24.94
NDWFSJ05	3.900	0.44	12	-24.03
SDSS04	3.768	0.73	96	-24.39
COSMOS1782	3.748	0.78	72	-23.26
SDSS20	3.899	0.53	58	-24.71
SDSS27	3.604	1.00	42	-24.22
COSMOS955	3.715	0.51	84	-24.65
COSMOS1311	3.736	0.51	29	-24.53
SDSS3777	3.723	0.61	26	-24.62
SDSS3793	3.743	0.84	12	-24.51
SDSS3785	3.769	0.88	20	-24.63
SDSS3832	3.663	0.88	11	-24.72
UDS10275	4.096	0.75	27	-23.80
MEAN	3.82	0.74		-24.46

No evolution of LyC escape fraction with luminosity for z~4 QSOs down to M1450~-23.

We can assume that fesc is constant also at fainter luminosities (M1450=-18).

The photo-ionization rate of AGNs

Assuming fesc=75%, QSOs/AGNs can produce 50-100% of ionizing emissivity at z~4 if faint-end Luminosity Function is steep.

Steep QSO LFs have been found by Glikman et al. (2011), Giallongo et al. (2015, 2019), Grazian et al. (2020, 2022), Boutsia et al. (2018, 2021), Harikane et al. (2023).

Summary

LyC escape fraction of bright QSOs and faint AGNs: 1-Spectra should be preferred w.r.t. broad and narrow-band imaging for LyC escape fraction determination. 2-At z<1, bright QSOs and faint AGNs have fesc~100%. 3-At 1 \leq z \leq 4, bright QSOs (M1450=-26) have fesc \sim 75%. 4-Strong LyC escape fraction of faint (M1450<-23) AGNs at z>4 is substantial (~75%). No evolution of LyC escape fraction with Luminosity (Cristiani et al. 2016; Grazian et al. 2018). 5-High space density of bright QSOs and faint AGNs at z~4 (Boutsia et al. 2018, 2021; Giallongo et al. 2015, 2019; Harikane et al. 2023). High space density of bright QSOs at $z\sim5$ (Grazian et al. 2022).

At z~4-5 AGNs can produce 50-100% of HI ionizing background.

AGNs could be the main producers of photo-ionizing background at z>4.

Thank you!