Escape of Lyman radiation from galactic labyrinths 2023 OAC, Kolymbari, Crete Apr 18th, 2023⁻

Do we know the start of the labyrinth? The challenge of determining ionizing fluxes from massive stars The challenge of determining ionizing fluxes from massive stars

Andreas A.C. Sander

Emmy Noether Research Group Leader ZAH/ARI, Universität Heidelberg

Group Members: V. Ramachandran, R.R. Lefever, M. Bernini-Peron, C.J.K. Larkin, E.C. Schösser

Heidelberg Hot Star Atmosphere Group

Emmy Noether Group on stellar atmospheres and mass loss of hot stars

Roel Lefever PhD Student

Elisa Schösser
PhD Student

Matheus Bernini Peron PhD Student

Andreas Sander Group Leader

Varsha Ramachandran Postdoc

Cormac Larkin PhD Student co-supervision w/ Brian Reville (MPIK)

2

Application and development of stellar atmospheres

Schematic overview of stellar atmosphere calculations:

-
-

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
-

Application and development of stellar atmospheres

3

Schematic overview of stellar atmosphere calculations:

Approximated and self-consistent hydrodynamics

4

Problem: Atmosphere models commonly assume stellar winds parameters Radiative Transfer: $J_\nu = \Lambda_\nu S_\nu(\vec{n}, \nu)$

J*ν* : radiation field (angle-averaged intensity) \vec{n} : atomic level population numbers

> Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

 $v(r)$: wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Fixed wind stratification: $\rho(r)$ *, v*(*r*)*, M*

Approximated and self-consistent hydrodynamics

UNIVERSITI
HEIDELRER

4

Problem: Atmosphere models commonly assume stellar winds parameters

Inherent inconsistencies between star and wind

- \rightarrow balance of rad. pressure and gravity is violated
- \rightarrow wind is too strong/weak for what can be driven
- \rightarrow degeneracies for different wind assumptions
- \Rightarrow no insights on radiative driving

 \rightarrow we observe/measure winds but we do not understand them

Radiative Transfer: $J_{\nu} = \Lambda_{\nu} S_{\nu}(\vec{n}, \nu)$

J*ν* : radiation field (angle-averaged intensity) \vec{n} : atomic level population numbers

> Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

 $v(r)$: wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Fixed wind stratification: $\rho(r)$ *, v*(r)*, M*

Approximated and self-consistent hydrodynamics

4

Problem: Atmosphere models commonly assume stellar winds parameters

Inherent inconsistencies between star and wind

- \rightarrow balance of rad. pressure and gravity is violated
- \rightarrow wind is too strong/weak for what can be driven
- \rightarrow degeneracies for different wind assumptions
- \Rightarrow no insights on radiative driving
	- → we observe/measure winds but we do not understand them

Solution: Consistent hydrodynamical treatment

Use radiative acceleration a_{rad} from detailed radiative transfer

$$
a_{\text{rad}}(r) = \frac{1}{c} \int_{0}^{\infty} \varkappa_{\nu}(r) F_{\nu}(r) \mathrm{d}\nu
$$

Radiative Transfer: $J_{\nu} = \Lambda_{\nu} S_{\nu}(\vec{n}, \nu)$

J*ν* : radiation field (angle-averaged intensity) \vec{n} : atomic level population numbers

> Rate Equations: $\vec{n} \cdot \mathbf{P}(\mathbf{J}) = \vec{b}$

 $v(r)$: wind velocity (as a function of radius) \dot{M} : wind mass-loss rate

Consistent wind stratification: $\rho(r)$ *, v*(*r*)*, M*

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

-
-

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
-

UNIVERSITI
HEIDELRER

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

-
-

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

5

UNIVERSITÄT

Stellar Parameters Stratification Input Stratification Business State Emergent Spectrum Stellar Parameters State Equilibrium Business State Emergent Spectrum Business State Equilibrium Business State Emergent Spectrum Busi

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

Some benefits and costs:

 \triangleright Wind velocity field $v(r)$ is output instead of input

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

5

- \triangleright Wind velocity field $v(r)$ is output instead of input
	- Prediction of the wind mass-loss rate M

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

5

- \triangleright Wind velocity field $v(r)$ is output instead of input
- Prediction of the wind mass-loss rate M
- Consistent prediction of stellar feedback from first principles

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

5

- \triangleright Wind velocity field $v(r)$ is output instead of input
- Prediction of the wind mass-loss rate M
- Consistent prediction of stellar feedback from first principles
- Additional iteration layer due to update of wind density profile

Inclusion of stationary hydrodynamics yields a new generation of stellar atmospheres:

Iterative Corrections

- Temperature Strat.
- Stat. Equilibrium
- Radiative Transfer
-

- \triangleright Wind velocity field $v(r)$ is output instead of input
- Prediction of the wind mass-loss rate M
- Consistent prediction of stellar feedback from first principles
- Additional iteration layer due to update of wind density profile
- Requires detailed atomic data, even if not relevant for the spectrum

The Ionizing Flux of hot, massive stars

Hot stars are not black bodies

- \blacktriangleright (non-LTE) opacities in the stellar atmosphere change the spectral shape
- ▶ strong "blanketing" effect by Fe line opacities

Number of photons beyond an ionization edge:

$$
Q_{\rm edge} = \int\limits_{\nu_{\rm edge}}^{\infty} \frac{F_{\nu}}{h\nu} \, \text{d}\nu
$$

HNIVEDSITÄ UNIVERSITA

The Ionizing Flux of hot, massive stars

Hot stars are not black bodies

- \blacktriangleright (non-LTE) opacities in the stellar atmosphere change the spectral shape
- ▶ strong "blanketing" effect by Fe line opacities

Number of photons beyond an ionization edge:

$$
Q_{\rm edge} = \int\limits_{\nu_{\rm edge}}^{\infty} \frac{F_{\nu}}{h\nu} \, \text{d}\nu
$$

UNIVERSITÄT
HEIDELBERG
ZUKUNET EURUINTI
PEIT 1996

Obtaining ionizing fluxes

Usually we have no direct observational access to the extreme UV: How do we know anything about ionizing fluxes?

Measuring nebular emission lines:

Strategy:

- \rightarrow measure or model emission lines, e.g., H α
- \rightarrow infer ionizing flux (for H α : Q_{H1})

Stellar atmosphere models:

Data from Shenar et al. (2015)

Strategy:

 \rightarrow reproduce observations in UV/opt/IR \rightarrow infer (E)UV properties from the model

Hot Stars on the Main Sequence

Climbing up the main sequence:

- Gradual increase in Q_{H1} and Q_{He1} towards higher MS masses (and thus luminosities)
- Only the hottest, i.e. most massive MS stars contribute non-negligible $Q_{He II}$

UNIVERSITÄT
HEIDELBERG
ZUKUNET CURUISTI
PEIT 1996

Hot Stars on the Main Sequence

Climbing up the main sequence:

- Gradual increase in Q_{H1} and Q_{H2} towards higher MS masses (and thus luminosities)
- Only the hottest, i.e. most massive MS stars contribute non-negligible $Q_{\text{He II}}$

Evolved stars with $T_{\text{eff}} \leq T_{\text{ZAMS}}$: \rightarrow stars reach higher L \rightarrow more ionizing flux, but T_{eff} -dependency dominates \rightarrow little contribution to $Q_{\text{He II}}$

UNIVERSITÄT
HEIDELBERG
ZUKUNET CURUISTI
PEIT 1996

Population III Stars

Post-MS stars

Hot stars left of the main sequence:

Evolved stars that have lost (part of) their hydrogen envelope

(either by self-stripping or via a companion)

Example: AzV 476 – the earliest ecplising O-type binary in the SMC (04 IV-III + 09 V)

(Detailed spectroscopic analysis by Pauli et al. 2022)

10

UNIVERSITÄT EUNUISET
2010 1990

He II ionizing flux depends on stellar winds

Hell ionizing photons can be consumed to drive (strong) stellar winds

- \rightarrow Dense wind: He recombination \hookrightarrow opaque to He⁺ photons
- \rightarrow typically in sgO and WR stars
- \rightarrow Dynamically-consistent atmosphere calculations reveal abrupt transition
- \rightarrow Origin of observed nebular He II in low metallicity galaxies?

Caution: Absolute numbers depend on the stellar temperatures (models here: $T_* = \text{const.}$)

Classical Wolf-Rayet stars

Classical WR stars: Helium-burning stars with little to no hydrogen \rightarrow high temperatures \rightarrow good sources of ionizing feedback?

Problem: Winds are often too dense \rightarrow no Q_{HeII} (see also Smith et al. 2002, Crowther & Hadfield 2006)

The winds of He-burning stars

$Q_{\text{He II}}$ crucially dependent on \dot{M}_{WR}

Predictions for \dot{M}_{WR} from HD modelling:

- \rightarrow steep decline of \dot{M}_{WR} when winds get optically thin
- \rightarrow $\,Q_{\rm H\,I}$ mostly independent of wind strength $(\dot{M},\,Z)$
- \rightarrow Below transition: huge sources of He II ionizing flux

Helium stars as sources of He II ionizing flux

WR-type mass loss is radius/temperature-dependent: characteristic "transformed mass-loss rate" for regime that yields He II ionizing flux

14

UNIVERSIIA
HEIDELRER

Empirical ionizing flux determinations for WR stars

 $T_{\text{eff}} = 44$ kK $\log L/L_{\odot} = 5.88$

WRs at higher Z can also be strong emitters, e.g.: \rightarrow WN3ha (or WN3/O3) \rightarrow WO stars

In contrast: No $Q_{\text{He II}}$ from any known WC star

SMC AB 1 (WN3ha)

SMC AB 12 (WN3ha)

Non-WR hydrogen-stripped stars

Hot, hydrogen-stripped stars \rightarrow predicted in large numbers by binary evolution

- \rightarrow current searches find only every few stars
- \rightarrow maybe no WR-type spectral signatures?
- \rightarrow evolution models usually treat them as WR stars
- \rightarrow significant contribution to Q_{HeII} ?

Non-WR hydrogen-stripped stars

So far: Partially stripped stars found, not sitting on He $ZAMS \rightarrow observational$ hunt still on

- \rightarrow mass-loss rates for stripped stars need UV
- \rightarrow contribution to $Q_{\text{He II}}$ highly uncertain

Non-WR hydrogen-stripped stars

So far: Partially stripped stars found, not sitting on He $7AMS \rightarrow$ observational hunt still on

- \rightarrow mass-loss rates for stripped stars need UV
- \rightarrow contribution to $Q_{\text{He II}}$ highly uncertain

Open question: Does binary evolution (e.g. mass transfer, winds) work different than we think?

He II emission as a tracer of He II ionizing flux

18

Broad He II emission:

Narrow He II emission:

Highly energetic ionizing flux above 54 eV ($Q_{He II}$) can be traced by *nebular* He II emission, in particular He II 1640 Å (UV) and He II 4686 Å (opt)

Contrary, hot stars with dense winds show broad He II lines

- \rightarrow usually either broad or narrow He II in unresolved populations
- \rightarrow stellar emission lines usually broader than nebular lines

Spectral morphology of hot Stars

high-mass end of the main sequence $(\Gamma_e \rightarrow 1)$: $Of \rightarrow \overline{Of/WNh} \rightarrow \overline{WNh}$

19

HEIDELBER EUNUISET
2010 1990

Very Massive Stars:

- ▶ $M_{\text{ini}} > 100 M_{\odot}$
- ▶ H-burning, WNh-type
- Observed so far at $Z > Z_{LMC}$
- ▶ How do they look at lower Z?
- Contribution to Q_{H1} and $Q_{He II}$?

Very Massive Stars: Observations

Best studied observations of VMS: R136 cluster in the LMC

VMS create broad He II 1640 in young clusters that could not yet form classical WR stars

Very Massive Stars: Observations

Best studied observations of VMS: R136 cluster in the LMC

VMS create broad He II 1640 in young clusters that could not yet form classical WR stars But: These VMS are not a (significant) He II ionizing source (despite being an enormous source of Q_{H1})

Very Massive Stars and He II emission

21 **HNIVEDSITÄ** HEIDELBERG ZUKUNE EURUINTI
PEIT 1996

Very Massive Stars as potential sources of narrow He II emission

Stars very close to $\Gamma_e \rightarrow 1$ at $\overline{Z} \ll \overline{Z_{\odot}}$: \rightarrow high \dot{M} , but low v_{∞} \rightarrow narrow He II emission, but no Q_{HeII}

The ULLYSES legacy observations

ULLYSES:

- $\blacktriangleright \approx 1000$ HST DDT orbits $(+)$ archival data)
- \blacktriangleright half of them devoted to \approx 250 massive stars
- ▶ O, B, and WR stars in the LMC and SMC

⁺ a few OB stars in low-metal dwarfs (NGC 3109, Sext A, archival: WLM, IC 1613, Leo P)

The ULLYSES legacy observations

ULLYSES:

- ≈ 1000 HST DDT orbits $(+)$ archival data)
- \blacktriangleright half of them devoted to \approx 250 massive stars
- ▶ O, B, and WR stars in the LMC and SMC

⁺ a few OB stars in low-metal dwarfs (NGC 3109, Sext A, archival: WLM, IC 1613, Leo P)

Aim: Create a UV spectroscopic legacy library

- Targets selected from atlas criteria
- Does not guarantee "prototypical" stars \rightarrow spectral analyses necessary

The X-Shooting ULLYSES (XShootU) collaboration

Open collaboration:

- ▶ Large ESO Programme (125.5 hrs, PI: J.S. Vink): XShooter spectra for all (original) ULLYSES targets
- \blacktriangleright necessary optical (+NIR) complement for obtaining robust stellar properties
- \blacktriangleright 13 working groups devoted to different scientific aspects

Website: [massivestars.org/xshootu](https://www.massivestars.org/xshootu/)

The X-Shooting ULLYSES (XShootU) collaboration

Open collaboration:

- Large ESO Programme (125.5 hrs, PI: J.S. Vink): XShooter spectra for all (original) ULLYSES targets
- \blacktriangleright necessary optical (+NIR) complement for obtaining robust stellar properties
- \blacktriangleright 13 working groups devoted to different scientific aspects

Website: [massivestars.org/xshootu](https://www.massivestars.org/xshootu/)

- Sophisticated data reduction and distributed spectral analysis of (eventually) all targets
- Enables distinction of "prototypical" and "non-standard" (e.g., binary evolution) objects
- Analysis yields accurate ionizing fluxes (incl. Q_{HeII})

X-Shooting ULLYSES: first results

Determination of wind velocities from UV spectroscopy

Exemplary comparison of different atmosphere analysis codes and methods

X-Shooting ULLYSES: first results

Determination of wind velocities from UV spectroscopy

Exemplary comparison of different atmosphere analysis codes and methods

 $Q_{\rm H I}$ F2: 49.14 C1: 49.25 P1: 49.08 $Q_{\text{He II}}$ F2: 43.79 C1: 44.08 P1: 43.38 \rightarrow no large

discrepancies

Summary: Ionizing fluxes from massive stars

▶ Robust individual ionizing fluxes require quantitative spectroscopy

 25

- \rightarrow Black bodies are insufficient to predict ionizing fluxes
- \rightarrow Spectra necessary to determine precise temperatures
- \rightarrow He II ionizing flux ($Q_{He II}$) requires wind measurement
- ▶ Wolf-Rayet winds are occurring close to the (full) Eddington Limit \rightarrow at low Z: Higher L/M needed to reach WR-type mass loss
	- \rightarrow massive BHs easier to form already at $Z \approx 0.1 Z_{\odot}$
	- \rightarrow winds absorb $Q_{\text{He II}}$, but WRs are huge sources of $Q_{\text{H I}}$
- \triangleright Stellar sources for $Q_{\text{He II}}$ require high T_{eff} and thin winds
	- \rightarrow most massive main sequences stars for $Z \rightarrow 0$
	- \rightarrow classical Wolf-Rayet stars with weak winds (e.g. WN3ha, WO) \hookrightarrow characteristic "transformed mass-loss rate": log $\dot{M}_\text{t} < -4.5$
	- \rightarrow hot, hydrogen-depleted stars below the WR regime ("stripped stars") \rightarrow rarely found yet, possibly different than typically assumed