The sensitivity of the 21cm signal – LAE cross correlations to the ionisation topology.

Anne Hutter

Collaborators: Caroline Heneka, Astraeus Team (Pratika Dayal, **Maxime Trebitsch,** Stefan Gotlöber, Gustavo Yepes, Laurent Legrand)

Was reionisation driven by the numerous faint or the few bright galaxies?

NOIT		Few bright galaxies drive reionisation		
NA BA		DARK AGES	REIONISATION	
RECOMB		Numerous faint galaxies drive reionisation		
	TIME	200 Myr	di Gyr	

Was reionisation driven by the numerous faint or the few bright galaxies?

BANG	DARK AGES	Few bright galaxies drive reionisation	21cm signal	LAEs	
RECOMBI	TIME 200 N	Numerous faint galaxies drive reionisatio	n	ti Gyr	

Astraeus framework: simulating the evolution of galaxies and the IGM

Hutter+ 2021a, 2022, Ucci+2023

f_{esc} decreases with halo mass MHDEC

Astraeus simulations

f_{esc} increases with halo mass MHINC

As LAEs ($L_{\alpha} > 10^{42}$ erg/s) are the most massive galaxies, their spatial distribution depends mostly on the global ionisation state of the IGM.

Where are Lyman-α emitters located in the IGM?

LAEs are located in the most ionised overdense regions

no 21cm signal

21cm – LAE cross correlation function: characteristics

small-scale amplitude

21cm – LAE cross correlation functions: small-scale amplitude

During reionisation:

$$\xi_{21,LAE}(r pprox 0) pprox - \langle \chi_{HI} \rangle \langle 1 + \delta
angle_{HI}$$

21cm – LAE cross correlation function: small-scale amplitude traces ionisation topology!

21cm – LAE cross correlations are sensitive to ionisation topology!

21cm – LAE cross correlations are sensitive to ionisation topology!

21cm – LAE cross correlations are sensitive to ionisation topology!

Cumulative distribution function of size of ionised regions around LAEs

Too small boxes underestimate 21cm – LAE cross correlation amplitudes due to missing large-scale power

Simulation volumes of more than \sim (250 cMpc)³ needed.

Conclusions

LAEs ($L_{\alpha} > 10^{42}$ erg/s) are the most massive galaxies.

- > They are located in the most ionised overdense regions.
- Spatial distribution is mostly sensitive to the the global ionisation state of the IGM.

21cm-LAE cross correlation function amplitude is sensitive to:

- ionisation history
- ionisation topology
- IGM heating

$$\xi_{21,LAE}(r) \approx -\langle \chi_{HI} \rangle \ \langle 1 + \delta \rangle_{HI} \ \left[1 - \langle \xi_{HI} \rangle CDF(r) \right]$$

$$\xi_{21,LAE}(r \approx 0) \approx -\langle \chi_{HI} \rangle \ \left\langle \left| \left(1 - \frac{T_{CMB}}{T_s} \right) (1 + \delta) \right\rangle_{HI} \right|_{HI} \right\rangle$$

