The Lyman-alpha cosmic web in TNG50 CB & Nelson, arXiv:2212.08666

Chris Byrohl

Institute for Theoretical Astrophysics, Heidelberg Escape of Lyman radiation from galactic labyrinths, Crete, April 18, 2023

Galaxy clustering

• Use galaxy clustering to indirectly infer filamentary structure, but cannot trace gas

Galaxy clustering

• Use galaxy clustering to indirectly infer filamentary structure, but cannot trace gas

Galaxy clustering

• Use galaxy clustering to indirectly infer filamentary structure, but cannot trace gas

Lyman-alpha absorption

- Use absorption in bright continuum spectra to reconstruct the neutral hydrogen density field
- sparse sampling, resolution \sim \tilde{I} Mpc

Galaxy clustering

• Use galaxy clustering to indirectly infer filamentary structure, but cannot trace gas

Lyman-alpha absorption

- Use absorption in bright continuum spectra to reconstruct the neutral hydrogen density field
- sparse sampling, resolution \sim \tilde{I} Mpc

Galaxy clustering

• Use galaxy clustering to indirectly infer filamentary structure, but cannot trace gas

Color coding: log Lya surface brightness

Lyman-alpha absorption

- Use absorption in bright continuum spectra to reconstruct the neutral hydrogen density field
- sparse sampling, resolution \sim \tilde{I} Mpc

Lyman-alpha emission

Model Lya emission and radiative transfer of the cosmic web Determine distribution of Lya filaments and their underlying props

Lyman-alpha emission: A multi-scale tracer

Galaxy/ISM

Lyman-alpha radiative transfer simulations on top of the MHD cosmological galaxy formation simulation TNG50

(C B, N els on+21)

Lyman-alpha emission: A multi-scale tracer

Lyman-alpha radiative transfer simulations on top of the MHD cosmological galaxy formation simulation TNG50

Lyman-alpha emission: A multi-scale tracer

(C B, N els on+21)

Lyman-alpha radiative transfer simulations on top of the MHD cosmological galaxy formation simulation TNG50

Observations

LAF/ LCW

LABs/LA

Ns

(Bacon+21) (Croft+16, Lin+22)

 -20

 $\overline{20}$ r_{\perp} [cMpc]

Simulated stacked radial profiles at z=3.0

Observations:

 Φ Leclercq+17 \blacktriangleright Kikuchihara+21

(Bacon+21) (Croft+16, Lin+22)

L

LAHs

LA

ABs/LA

Ns

Paint on the emission from stellar populations and diffuse gas

 $\epsilon_{\rm exc} = \gamma_{1s2p}(T) n_e n_{HI} E_{\rm Ly\alpha}$ $\epsilon_{\text{rec}} = f_{\text{rec}}(T) n_e n_{HII} \alpha(T) E_{\text{Lv}\alpha}$ $\epsilon_{SF} = 10^{42}$ (erg/s)/(M_o/yr) · SFRd

Paint on the emission from stellar populations and diffuse gas

 $\epsilon_{\rm exc} = \gamma_{1s2p}(T) n_e n_{HI} E_{\rm Ly\alpha}$ $\epsilon_{\text{rec}} = f_{\text{rec}}(T) n_e n_{HII} \alpha(T) E_{\text{Lv}\alpha}$ $\epsilon_{SF} = 10^{42}$ (erg/s)/(M_o/yr) · SFRd

Stellarsynth.

code BPASS

code brated dust
+ **calibrated dust** attenuation model

Flattening in observed radial profiles (Wisotzki+18, Kikuchihara+21, Niemeyer+22) explained by scattered photons of nearby galaxies (Byrohl+21) \rightarrow environmental effect

Flattening in observed radial profiles (Wisotzki+18, Kikuchihara+21, Niemeyer+22) explained by scattered photons of nearby galaxies (Byrohl+21) \rightarrow environmental effect

Lya nebula for scale (Cantalupo+14):

Lya filament identification

Lya nebula for scale (Cantalupo+14):

Lya filament identification

LAF $\begin{array}{|l|}\n & -21.0 & -20.5 \\
- & -20.0 & - & -19.5 \\
\hline\n & - & -19.0 & - & -18.5\n\end{array}$ Between 2<z<2.4 for footprint: blueMUSE/KCWI: $\langle N \rangle \approx 1$ HET-VIRUS: $\langle N \rangle \approx 300$

Lya filament identification

 $\mathbf{LAF}\left| \begin{array}{c} 56\% \\ -21.0 - 20.5 \\ -20.0 - -19.5 \end{array} \right|$ $\mathbf{n}_{\mathrm{LAF}} = 10^{-3} \mathrm{cMpc}^{-3}$
 $\mathbf{LAF}\left| \begin{array}{c} 56\% \\ -20.0 - 19.5 \\ -19.0 - -18.5 \end{array} \right|$ Between 2<z<2.4 for footprint: blueMUSE/KCWI: $\langle N \rangle \approx 1$ HET-VIRUS: $\langle N \rangle \approx 300$

Color coding: circular – filamentary shape

Lyman-alpha filaments (LAF): Elongated structures with L > 400pkpc at SB threshold $\sim 10^{-20} \,\rm erg \,s^{-1} \,cm^{-2} \,arcsec^{-2}$

Lya nebula for scale (Cantalupo+14):

Lya filament identification

 $\left[\begin{array}{c|c} 1 & 1 & 1 \ \hline 1 & 1 & 1 \ \hline 2 & 1 & 1 \ \hline 3 & 1 & 1 \ \hline 4 & 1 & 1 \ \hline 5 & 1 & 1 \ \hline 6 & 1 & 1 \ \hline 7 & 1 & 1 \ \hline 8 & 1 & 1 \ \hline 9 & 1 & 1 \ \hline 10 & 10 & 1 \ \hline 11 & 11 & 1 \ \hline 12 & 11 & 1 \ \hline 13 & 11 & 1 \ \hline 14 & 11 & 1 \ \hline 15 & 11 & 1 \ \hline 16 &$ blueMUSE/KCWI: $\langle N \rangle \approx 1$ HET-VIRUS: $\langle N \rangle \approx 300$

Color coding: circular – filamentary shape

Lyman-alpha filaments (LAF): Elongated structures with L > 400pkpc at SB threshold $\sim 10^{-20} \,\rm erg \,s^{-1} \,cm^{-2} \,arcsec^{-2}$ \rightarrow significantly more common than LABs, for

which we find one candidate in TNG50 consistent with LAB number densities

Lya nebula for scale (Cantalupo+14):

ESO/P. Horálek

MUSE-EDF:

 $\begin{array}{|l|l|}\n\hline\n\text{NUSB}}\n\end{array}$ 1×400pkpc fil @ z=3,

selected around $\delta_{\text{LAE}} \gg 1$ 1×400pkpc fil @ z=3, 100h alloc (Bacon+21) $1 \sigma \sim 2 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

ESO/P. Horálek

MUSE-EDF:

1 \times 400pkpc fil @ z=3, 100h alloc (Bacon+21) $1 \sigma \sim 2 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

HET-GAMA09: 1×2 Mpc fil @ z=2.4 selected by eye

(Fabricius+23, in prep.)

34h alloc $1 \sigma \sim 7 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

HET-VDF (proposed): 48h alloc in EGS 2023-2024 $1 \sigma \sim 3 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

MUSE-EDF:

ESO/P. Horálek

 $\begin{array}{ll}\n\mathbf{V} & \mathbf{I} \times 400 \text{pkpc} \text{ fil} \text{ @ } z=3,\n\end{array}$ selected around $\delta_{\text{LAE}} \gg 1$ 1 \times 400pkpc fil @ z=3, 100h alloc (Bacon+21) $1 \sigma \sim 2 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

HET-GAMA09: 1×2 Mpc fil @ z=2.4 selected by eye (Fabricius+23, in prep.)

34h alloc

 $1 \sigma \sim 7 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

HET-VDF (proposed): 48h alloc in EGS 2023-2024 $1 \sigma \sim 3 \cdot 10^{-20} \text{erg/s/cm}^2/\text{arcsec}^2$

Intrinsic ∀ Scattered (what we observe)

consider gas state

at last scattering: from where the photons reach us

consider gas state

at last scattering: from where the photons reach us **at origin**: where the photons are emitted

consider gas state

at last scattering: from where the photons reach us

at origin: where the photons are emitted

→ questions we can answer

consider gas state

at last scattering: from where the photons reach us **at origin**: where the photons are emitted **→ questions we can answer**

How is Lya emission distributed? (**intrinsic**, **at origin**)

consider gas state

at last scattering: from where the photons reach us **at origin**: where the photons are emitted **→ questions we can answer**

How is Lya emission distributed? (**intrinsic**, **at origin**)

Where does the observed radiation originate? (**scattered**, **at origin**)

consider gas state

at last scattering: from where the photons reach us **at origin**: where the photons are emitted **→ questions we can answer**

How is Lya emission distributed? (**intrinsic**, **at origin**)

Where does the observed radiation originate? (**scattered**, **at origin**)

What gas does the observed radiation trace? (**scattered**, **at last scattering**)

(what we observe)

Emission mechanism

- **collisions**: in diffuse gas, cooling via Lyman-alpha emission following collisions
- **recombinations**: in diffuse gas, recombinations following ionization, particularly by nearby AGN and UV background
- **star-formation**: nebular emission sourced by ionizing radiation around stellar populations

Emission mechanism

- **collisions**: in diffuse gas, cooling via Lyman-alpha emission following collisions
- **recombinations**: in diffuse gas, recombinations following ionization, particularly by nearby AGN and UV background
- **star-formation**: nebular emission sourced by ionizing radiation around stellar populations

Spatial component

- **IGM**: intergalactic medium gas, i.e. does not belong to any collapsed halo.
- outer halo: gas which is part of a dark matter halo, but gravitationally unbound, i.e. on the outskirts.
- **satellite**: gas gravitationally bound to a satellite galaxy in the orbit within a larger host halo
- CGM: gas in the halo, gravitationally bound to the central galaxy, and outside 10% of the halo virial radius
- **central**: gas in the halo, gravitationally bound to the central galaxy, and inside 10% of the halo virial radius

Lyα **filament boosting by its radiative transfer**

star-formation^{*}

collision

mechanism

recombination

intrinsic

intrinsic

Lyα **filament boosting by its radiative transfer**

Lya halos and hosting filaments are boosted by **central galaxies** and their **CGM**, sourced by **sf**/**coll** with halo masses of $10^{10} - 10^{11} M_{\odot}$ scattering into their **IGM**

Galaxy formation simulation

N $\sf II$ \sim $\bf\bf\bf\bf\bf\bf\bf\bf\bf\bf\bf\bf\bf\bf$

N =م.
ا

Post-processing & analysis

- Constrained cosmological simulations, testing galaxy formation models in their cosmological environment
- Evaluate at z=2.5 in order
	- test at high redshift
	- save \sim 80% of compute time
- Use the ICs from the CLAMATO survey in the COSMOS field
- Currently have the DMO runs at target resolution; awaiting allocation for baryon runs

Galaxy formation simulation

Lyα **radiative transfer code**

Post-processing & analysis

- Currently, we can only account for sub-resolution effects in the emission by *re-weighting photons' initial spectra and luminosities* for all photons
- How to test subgrid radiative transfer impact?

Lyα **radiative transfer code**

Post-processing & analysis

- Currently, we can only account for sub-resolution effects in the emission by *re-weighting photons' initial spectra and luminosities* for all photons
- How to test subgrid radiative transfer impact?
- Combine toy models on subgrid scales
- Procedural generation to efficiently model subgrid

• Use the distributed dask framework on HPC/cloud resources

Summary

- Combine TNG50 + emission $+$ RT to simulate Lyman-alpha filaments
- Lya filaments trace IGM illuminated by scattered photons from central galaxies and their CGM residing in $10^{10} - 10^{11} M_{\odot}$ halos
- Largest structures are filamentary in shape, with $n_{\rm LAF} = 10^{-3} \,{\rm cMpc}^{-3}$ for $SB_{\text{thresh}} = 10^{-20} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2}$ and $FWHM = 3.5$ "
- Vary the fiducial galaxy formation model, the emission model and RT