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Motivation: The faint-end of the z > 6 Lya Luminosity Function

The observable Lyar emission from galaxies during the Epoch of Reionisation
depends sensitively on the residual volume averaged neutral fraction, xy;, within
the Universe. An observed overall decline of the Lyay emitter luminosity function
(LAE LF) from z =~ 6 to z & 7 is linked to a rapidly decreasing xy; — 0 from 0.5
over < 200 Myr [1,2]. Consistent with other probes, we deduce that reionisation
was essentially complete (i.e. xy =~ 0) at z = 6 [3]. Nevertheless, inferring
xH) solely from the integrated LAE LF is highly model dependent and current
LAE samples at those epochs are limited to log L ,.[ergs™] = 42.3. As of yet,
we do not have strong constraints on the sub-L, “faint-end” of the LAE LF.
Interestingly, especially at sub-L, the LAE LF is expected to show the strongest
attenuation with increasing z, if reionisation proceeds “bottom-up” [4,5]. The
deepest blind MUSE surveys [6-8], such as the MUSE GTO Hubble Ultra Deep
Field Surveys [7,8], that encompasses the 141 h deep MUSE eXtremely Deep
Field [8] (MXDF), finally allow for constraints in this respect.

A robust z > 6 LAE MXDF sample with LSDCat2.0

-27°46'20" 10
14 — 120
40"
g — 100
47'00" — 7 = - 80
a <=
= 5
6 & 60
20"
5 40
40" 4 20
© DR2 & LSDCat2.0
m DR2 only
3 0

3h32m4 s 405 38s 36°

Figure 1: Positions of z > 6 LAEs in the MXDF, colour coded by their LSDCat2.0 matched-

filter SN, plotted over the t.,, map. Circles correspond sources within the reference LSDCat2.0
catalogue (SNinresh > 5.4), whereas sources only in the DR2 catalogue are shown by squares.

An unbiased census of the high-z galaxy population within the deepest MUSE
fields requires a pure sample not contaminated by spurious detections and fore-
ground galaxies with a well understood selection function. But, unfortunately
the selection function of the published deep-field catalogues is unknown. Con-
structing a LAE sample with LSDCat2.0 [9,10] removes this problem, as the
selection function of its matched filter is deterministic (see next box). To illus-
trate the difference between the catalogues, we compare in Figures 1 & 2 our
| SDCat2.0 z > 6 sample to the published catalogue in the MXDF [8]. The
oublished catalogue contains 15 z > 6 LAEs within the MXDF, 8 of which are
recovered by LSDCat. The remaining 7 are at a lower SN, where the number of
spurious detections would require significant manual cleaning of the catalogue.
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Figure 2: Line flux vs. detection wavelength of LAEs at z > 6 in the MXDF. Blue (open)
squares show sources from DR2 (outside the deep t., > 135h region), whereas LSDCat2.0
sources and measurements are shown with green circles. The grey line shows the 50% com-
pleteness limit of the idealised LSDCat2.0 selection function at SNipesh > 5.4 (cf. Fig. 3).

(The LSDCat2.0 catalogue also contains lower z galaxies not tabulated in [8].)

The selection function for the LSDCat2.0 sample

In ref. [10] it is derived that the selection function for catalogues of line emitters
constructed with LSDCat2.0, f-, can be written as
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where Fji,e is the emission line flux of a line at wavelength A\, SNipeqh is the

detection threshold, and erf(x) = %fox e tdt = 1 — %fxoo e~ dt. The

scaling factor C(\) in Eq. (1) depends solely on the used search template and
the match between this template and the detected source. For a perfect source-
template match we have
2
(SF[Z]})

C(\[z]) = Ai)\ \/Z (SU{A[Z]})2 . \ Z o (2)

where Sﬁ[z]} and SF[Z]} are the spatial and spectral shapes of the 3D matched

filter, respectively, o2 is the effective variance at wavelength layer \[z], and

A\ is the spectral width of a layer in the datacube. Figure 3 compares this
idealised selection function for the used Gaussian 3D search template in the
MXDF [10] and SNyesh = 5.4 to a more realistic selection function, that models
the expected Lya halos of high-z LAEs following the profiles derived in [11].
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Figure 3: Comparison of the idealised selection function (/eft panel) to a more realistic selection
function (right panel) that accounts for the expected variations in the low-SB halos of LAEs.

Faint z > 6 LAE number counts - expectations vs. reality

That log Liyu[ergs™] < 41.5 LAEs at z > 6 are an observationally uncon-
strained terra incognita can be appreciated when comparing number counts,
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predicted from extrapolated Schechter LAE LF parameterisations, ¢(L), from
the literature [1,2,12-15]. Less than ten to more than 100 LAEs are expected at
the flux limits reached in the deepest MUSE surveys, depending on the reference.
We compare in Fig. 4 these expectations with the completeness uncorrected
number counts of the MXDF. |t becomes clear, that the completeness correction
will significantly affect the outcome of LAE LFs estimated from such samples.
Using the well defined f- of samples constructed with LSDCat2.0 now finally
allows to tackle this problem in a sound manner.
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Figure 4: Number count predictions, N(> F), of faint z = 6 LAEs according to extrapolated
Schechter parameterisations from the literature (refs. [1,2,12-15]) in comparison to complete-
ness uncorrected number counts in the MXDF.
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