

Department of Astronomy

1

Classifying the spectral shapes of Lyman-alpha emitting galaxies in the MUSE Extremely Deep Field

Eloïse Vitte - eloise.vitte@unige.ch / eloise.vitte@eso.org

Supervisors: Anne Verhamme (Unige, Geneva, Switzerland) and Pascale Hibon (ESO, Chile) Collaborators: Floriane Leclercq (The University of Texas at Austin, USA), Belén Alcalde Pampliega (ESO, Chile) and MUSE consortium

Escape of Lyman radiation from galactic labyrinths - 18.04.2023

Diversity of observed Lya emission lines from Lya emitting galaxies (LAEs)

What can we learn about formation and evolution of galaxies with such peculiar LAEs?

1. Characterize **exchanges** between the **CGM** and the **galaxies** (Dijkstra+06):

2. Study of the properties of the **IGM**: ➢Opacity ➢Ionized bubbles

3. Determine the **column density of HI** along the line of sight to get the **escape fraction of ionizing photons**

Verhamme+15+17 Izotov+21 Flury+22 Naidu+22

Furtak+22 Marques-Chaves+22

Spatial coverage of the cube: (1′×1′) Spectral coverage: 465 nm to 930 nm $(\Delta X, \Delta Y)$ =(0.2",0.2") and $\Delta \lambda$ =1.25Å

Multi Unit Spectroscopic Explorer (MUSE) data

Bacon+10

GTO (Guaranteed Time Observations)

Detection limits at 3σ: 6.3 * 10−20*erg* .*s*−¹ . *cm*²

Bacon+17

The MUSE Ultra Deep Field Bacon+23

MUSE eXtremely Deep Field (MXDF)

10h deep

UDF-10 30h deep

Each pixel is assigned a random value following a gaussian distribution of its variance value

Detection spectrum:

-
-

8

No-peak 11/504 3%

Classification distribution

Single-peak 213/504 42%

Double-peak 251/504 50%

Triple-peak 24/504 5%

Gas kinematics in the ISM/CGM of galaxies

52% of the double-peaks have a **blue peak stronger than the red one.** It may indicate signatures of **inflows.**

Vitte et al. in prep

Only 15 LAEs have the systemic redshift from nebular

Warning! Lack of systemic redshifts 200 600 -600 -200 lines in the MUSE spectra - coming from radiative transfer? - two red peaks or two blue peaks? - satellite? **blue peak valley red peak**

The systemic redshift is needed to confirm the nature of the double-peaked Lya lines we observe:

-
-

11

Satellite contamination

Peak separation = 401 km/s B/T flux ratio = 0.95

12

Universal fraction of double-peaks

Peak sep

B/T cannot be < 1/SNR

Redshift dimming LSF+redshift effect

13

The fraction of double-peaks decreases with redshift: **from** ~**80% at z**~**3 to 0% at z>6.5**

The strong evolution of the fraction of double-peaks with redshift opens new horizons for the study of **the IGM opacity** (Hayes+21)

Study of the IGM opacity

Objects above 10% of Lyman continuum escape All have peak sep below 400 km/s

23% of the complete parent sample are candidates for LyC leakage

Potential increase of the fraction of LyC leaker candidates with redshift

Flury+22b Leaker candidates

Leaker candidates

LyC leaker candidates B/T flux ratio > 0.5

Potential increase of the fraction of LyC leaker candidates with redshift

At z > 5.5, more than half of the double-peaks of the complete parent sample is candidate for LyC leakage

➢Aim: Study of exotic LAEs and especially with a **double-peak spectral profile**

- ➢Data: **MXDF**, deepest data observed by MUSE within a redshift range between **2.8** and **6.6**
	-
	-

➢Method: **Classification Method** dividing the parent sample into 5 categories

>Result 1: Double peaks represent 49% (106/217) of the sample with SNR ≥ 7, and $L_{Lya}\left[erg/s\right]\ge 3\times 10^{40}$ and $v_{sep}\ge 150$ $km\,s^{-1}$

➢Result 2: The fraction of double-peaks decreases with redshift: **from** ~**80% at z**~**3 to 0% at**

z>6.5, interpreted as **IGM opacity**

➢Result 3: **Half of the double peaks** are candidates for **Lyman-continuum leakage** (peak separation <= 400 km/s) and **have a blue dominant peak** (B/T flux ratio > 0.5)

Next steps

Apply my method to other datasets to unveil the composition of the LAE samples (LLAMAS of Claeyssens+22, high-EW LAEs of Kerutt+22, …)

Multi-wavelength study of the parent sample: ESO archives, ALMA, JWST, …

