

FACULTY OF SCIENCE Department of Astronomy

Classifying the spectral shapes of Lyman-alpha emitting galaxies in the MUSE Extremely Deep Field

Eloïse Vitte - <u>eloise.vitte@unige.ch</u> / <u>eloise.vitte@eso.org</u>

Supervisors: Anne Verhamme (Unige, Geneva, Switzerland) and Pascale Hibon (ESO, Chile) Collaborators: Floriane Leclercq (The University of Texas at Austin, USA), Belén Alcalde Pampliega (ESO, Chile) and MUSE consortium

Escape of Lyman radiation from galactic labyrinths - 18.04.2023

Diversity of observed Lya emission lines from Lya emitting galaxies (LAEs)

What can we learn about formation and evolution of galaxies with such peculiar LAEs?

1. Characterize exchanges between the CGM and the galaxies (Dijkstra+06):

Inflow Only a few ones Furtak+22 Marques-Chaves+22

2. Study of the properties of the **IGM**: >Opacity ➤lonized bubbles

3. Determine the **column density of HI** along the line of sight to get the **escape** fraction of ionizing photons

Verhamme+15+17 Izotov+21 Flury+22 Naidu+22

Multi Unit Spectroscopic Explorer (MUSE) data

Spatial coverage of the cube: (1'×1') Spectral coverage: 465 nm to 930 nm $(\Delta X, \Delta Y) = (0.2", 0.2") \text{ and } \Delta \lambda = 1.25 \text{\AA}$

Bacon+10

The MUSE Ultra Deep Field Bacon+23

Bacon+17

MUSE eXtremely Deep Field (MXDF) ~140h deep

Detection limits at 3σ : $6.3 * 10^{-20} erg. s^{-1}. cm^2$

GTO (Guaranteed Time Observations)

UDF-10 30h deep

10h deep

Each pixel is assigned a random value following a gaussian distribution of its variance value

Detection spectrum:

8

Classification distribution

No-peak 11/504 3%

Single-peak 213/504 42%

Double-peak 251/504 50% Triple-peak 24/504 5%

Gas kinematics in the ISM/CGM of galaxies

Vitte et al. in prep

52% of the double-peaks have a blue peak stronger than the red one. It may indicate signatures of inflows.

Warning! Lack of systemic redshifts

Satellite contamination

Peak separation = 401 km/s B/T flux ratio = 0.95

Universal fraction of double-peaks

Redshift dimming

LSF+redshift effect

B/T cannot be < 1/SNR

sample
- 1/SNR
'SNR

<u>0</u> 0
100 200

Study of the IGM opacity

The fraction of double-peaks decreases with redshift: **from ~80% at z~3 to 0% at z>6.5**

The strong evolution of the fraction of double-peaks with redshift opens new horizons for the study of **the IGM opacity** (Hayes+21)

Flury+22b

Objects above 10% of Lyman continuum escape All have peak sep below 400 km/s

23% of the complete parent sample are candidates for LyC leakage

Potential increase of the fraction of LyC leaker candidates with redshift

Leaker candidates

Potential increase of the fraction of LyC leaker candidates with redshift

At z > 5.5, more than half of the double-peaks of the complete parent sample is candidate for LyC leakage

Leaker candidates

LyC leaker candidates B/T flux ratio > 0.5

><u>Aim</u>: Study of exotic LAEs and especially with a **double-peak spectral profile**

><u>Method</u>: **Classification Method** dividing the parent sample into 5 categories

><u>Result 1:</u> **Double peaks** represent **49%** (106/217) of the sample with $SNR \ge 7$, $L_{Lv\alpha}[erg/s] \ge 3 \times 10^{40} \text{ and } v_{sep} \ge 150 \, km \, s^{-1}$

z>6.5, interpreted as **IGM opacity**

><u>Result 3:</u> Half of the double peaks are candidates for Lyman-continuum leakage (peak separation <= 400 km/s) and have a blue dominant peak (B/T flux ratio > 0.5)

- ><u>Data:</u> **MXDF**, deepest data observed by MUSE within a redshift range between **2.8** and **6.6**

><u>Result 2:</u> The fraction of double-peaks decreases with redshift: from ~80% at z~3 to 0% at

*Apply my method to other datasets to unveil the composition of the LAE samples (LLAMAS of Claeyssens+22, high-EW LAEs of Kerutt+22, ...)

*Multi-wavelength study of the parent sample: ESO archives, ALMA, JWST, ...

What I want to know	The data I need
Systemic redshift	H-alpha line from JWST
Inclination	HST images
Dust content	CO line from ALMA
Environment	HST images, MUSE images
LyC leakage	Strong nebular Hell and CIV emission in JWST data
•••	•••

Next steps

