

Lyman radiation production in massive stars

Fabrice Martins

Laboratoire Univers et Particules de Montpellier

Ionizing photons and effective temperature

Ionizing photons and effective temperature

All stellar objects with Teff ≥ 20000 K produce some amount of ionizing photons

- O stars
- B stars < B2
- Wolf-Rayet stars
- Very/Super massive stars
- Stripped stars (sub-dwarfs)
- (- White dwarfs)

Ionizing photons and effective temperature

Atmosphere models: CMFGEN (Hillier & Miller 98), PoWR (Hamann+06), TLUSTY (Lanz+03) WM-BASIC (Pauldrach+03), FASTWIND (Puls+05)

High Teff implies high ionization, and smaller amount of HI HI ground state less populated → opacity smaller → stronger emission Ionizing photons and surface gravity

Higher gravity \rightarrow higher density \rightarrow more recombinations HI ground state more populated \rightarrow opacity larger \rightarrow less emission Ionizing photons and stellar parameters

TLUSTY OSTAR2002 – Lanz+03

http://tlusty.oca.eu/Tlusty2002/tlusty-frames-OS02.html

Ionizing photons and stellar parameters

Very limited impact of metallicity on H ionizing fluxes per unit area

Flux redistribution (caused by blanketing) takes place below Lyman break

Martins & Palacios 21

the role of stellar evolution

At lower Z:

For a given Teff radius is larger \rightarrow Q is larger

Stars reach higher Teff \rightarrow Q is larger

 $QH = qH \times 4\pi R^2$

 $L = 4 \pi R^2 \sigma T_{eff}^4$

Ionizing photons and metallicity

Models from Martins & Palacios 2017, 2021

Ionizing photons and metallicity

Models from Martins & Palacios 2017, 2021

Relation with spectral type

see Gull+22 for Z<1/5 Zsun

Effective temperature scale (relation Teff - spectral type) depends on Z (and log g): for a given spectral type, stars are hotter at lower Z (and have more QH)

Constraints from observations

Ramachandran+18,19

Effects of Z and log g on QH- SpT difficult to separate

Stellar populations: stellar evolution + atmospheres

Most Z effects

0.1 Ze, binaries 1.5 0.1 Zo, single stars Z_o, binaries Luminosity per Angstrom (normalised at 1500A) Z_{ce} single stars 1.00.0 200 400 Eldridge & Stanway17 600 800 1000 1200 1400 1600 Wavelength \ Angstrom

Stellar populations at lower Z produce more ionizing photons because stars tend to be hotter

Ionizing photons and stellar winds

Ionizing photons and stellar winds

Stripped stars: effect of mass loss rate on SED

The role of binaries

Envelope stripping in binary systems can produce WR stars for objects with masses below the threshold mass for WR formation through wind stripping

→ WR stars present at later stages in stellar populations

Stripped stars

Counterparts of WR binary products at low masses (sdO objects)

Appear after 10 Myr

Increase significantly QH

Individual objects to be identified

Goetberg+17,18,19,20

 \log_{10} Luminosity [erg s⁻¹ Å⁻¹]

Ionizing photons and stellar rotation

Chemically homogeneous evolution

mixing timescale < nuclear timescale

Star almost immediately mixed, with surface composition similar to central composition

Surface opacity reduced \rightarrow Teff increases

Blueward evolution

Maeder 87, Langer 92, Yoon+06, Mandel & de Mink 16, de Mink & Mandel 16, Marchant+16, Cui+18

Favoured at lower Z (reduced angular momentum loss because of weaker winds)

Can explain the properties of peculiar O and WR stars

Walborn+04, Martins+09,13, Hainich+15

VMS and ionizing photons

Hot and very luminous → large number of ionizing photons Very Massive Stars are defined by M>100 Msun A dozen individual objects known in the MW + MCs R136 in the LMC hosts the most massive stars

VMS and ionizing photons

For simple extrapolation of IMF, VMS contribute an additional 50% of ionizing photons

 $\boldsymbol{\xi}_{_{ion}}$ is increased

VMS and ionizing photons

Sunburst: VMS contribute an additional 15% of ionizing photons In spite of a small number of VMS relative to IMF extrapolation

VMS likely have a role in the early phases of the Universe

See talk by U. Mestric

Supermassive stars

Hypothetical objects, potential seeds of supermassive black holes May explain multiple populations in globular clusters (*Denissenkov+14, Gieles+18*)

Preferentially "cool" objects, but may have very hot phases → lots of H ionizing photons

Conclusion

- All stellar objects with Teff > 20000 K emit H ionizing photons
- qH (per unit surface) depends on the ionization strucutre and the HI ground level opacity. This is mainly controlled by Teff and log g
- qH depends weakly on metallicity, since flux redistribution caused by change of opacity takes place below the Lyman break
- QH depends on stellar radius and thus on stellar evolution and metallicity
- Calibration of QH vs spectral type depends on the effective temperature scale, which is Z sensitive
- Stellar winds affect relatively little the Lyman continuum (but impact the HeII continuum)
- Besides OB and WR stars (single or binaries), VMS do emit Lyman radiation. Stripped stars and supermassive stars are additional candidates