Lyman continuum escape fraction during cosmic reionization

Ivan Kostyuk with Benedetta Ciardi, Andrea Ferrara, Martin Glatzle, Dylan Nelson and Annalisa Pillepich

18.04.2023

Motivation

- ► Abundance of high z quasars too low ⇒ galaxies drive reionization.
- ► Two main questions remain:
 - 1. Photon production in high z galaxies
 - 2. Photon escape from galaxies
- f_{esc}: connection between ionizing photon production and reionization of the IGM

Analyzing f_{esc} of TNG50 galaxies

Simulating radiation transfer:

- ► Radiation transfer not self consistently included ⇒ halos need to be post-processed.
- RT code CRASH (*Ciardi et al. 2001, Graziani et al. 2013, Glatzle et al. 2019*)
- ► Select $\approx 10^4$ halos (z = 6 - 10, $M_{\star} = 10^6 - 10^8 {
 m M}_{\odot}$)

(Published in Kostyuk et al. 2023)

Semianalytic modelling of f_{esc} :

- Galaxy modelled as a thin slate based on Ferrara et al. (2023 in prep.)
- Ionizing flux derived from SFR
- Process all galaxies with $z > 5.2 \ (\approx 6 \times 10^5)$

(Kostyuk, Ferrara & Ciardi in prep.)

Dependence on stellar mass

- ► f_{esc} bimodal for low M_{*}
- Small galaxies with recent starbursts have high f_{esc}
- In larger halos this effect averages out

Correlation with halo properties

► For small M_{*}: f_{esc} correlated with ionizing emissivity

 For large M_{*}: f_{esc} correlated with spread of stellar populations

$f_{ m esc}$ dependence on photon energy

- *f*_{esc} decreases near exact ionization energies due to larger cross sections
- $f_{\rm esc}$ of HeII ionizing photons strongly suppressed

Dependence on the unresolved escape fraction

- ► No strong dependence on stellar mass.
- ▶ For $f_{\rm esc,loc} \ge 0.3$, changes in $f_{\rm esc,loc}$ have a proportional effect on the global $f_{\rm esc}$

Density of ionizing photons escaping into the IGM

- \dot{n}_{ion} increases with z.
- ► At z = 6 and 8 most photons escape from halos with $M_{\star} = 10^{6-7} M_{\odot}$
- ► At z = 10 halos with M_{*} < 10⁶ M_☉ contribute significantly

Ionizing photon emissivity density: Comparison to observations

• Emissivities with $f_{\rm esc,loc} = 0.3 - 0.5$ consistent with observational constraints

Semianalytic modelling of LyC escape

- ⟨f_{esc}⟩ decreases with redshift for low M_{*} and increases for high M_{*}
- Low abundance of high M_{\star} galaxies at high $z \Rightarrow$ overall decrease in f_{esc} with redshift.
- ► LyC escape into the IGM dominated by light galaxies (M_{*} < 10⁸M_☉)

Semianalytic modelling of LyC escape

LyC photons have two modes of escape

MAX PLANCK INSTITUTE

Conclusions

- ▶ RT modelling of f_{esc} :
 - ▶ For $M_{\star} < 10^7 {
 m M}_{\odot}$ the distribution of $f_{
 m esc}$ is bimodal.
 - ► $\langle f_{\rm esc} \rangle$ is strongly dependent on the photon energy. With few photons with $E_{\gamma} > 54 {\rm eV}$ escaping.
 - ▶ Non-linear dependence of f_{esc} on the value adopted for $f_{esc,loc}$.
 - ► Halos with a $M_{\star} \lesssim 10^{7.5} M_{\odot}$ contribute most of the ionizing photons.
- Physical modelling of f_{esc}:
 - \blacktriangleright LyC escape dominated by small galaxies $M < 10^8 {
 m M}_{\odot}$
 - Extensive leakage from the outer regions in small high metallicity galaxies
 - Localized leakage through small channels with high SF in younger metal poor galaxies.

