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Galaxy formation and feedback from massive stars

EAGLE (Schaye et al., 2015) llustrisTNG (Pillepich et al., 2018)
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The puzzle of the Lyman-alpha line shape ...

Scattering on HI atoms in the
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Theoretical frameworks for the interpretation of the Lya line shape
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It is not clear how these models
relate to real complex, multiphase,
flows of gas ...

We need high-resolution
simulations to go further.




In this talk :

- Update from simulations: Lya spectra that reproduce observations.

- What processes are responsible for the Lya line shape (scattering vs.
absorption) ?

- Where do these processes occur and which gas do they trace (ISM,
CGM, IGM) ?

- What can we learn from the shape of the Lya line in terms of gas flows ?



The simulation and mock Lya spectra



RHD simulation of a Lyman-alpha emitter (LAE)

RAMSES-RT cosmological zoom-in
RHD simulation (same as in
Mauerhofer+21)

Mhaio = 5.5 1010 Msun at z = 3, DM particles
~104 Msun, star particles ~103 Msun, spatial
resolution ~15pc.

SFR [M/yr]

Physical models are similar to SPHINX
simulations (Rosdahl+18, Garel+21).

The simulated galaxy is a typical LAE
seen in MUSE deep fields.
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Mock observations of the Lya line

Mock observations in 300 directions of 75 outputs betweenz =4 and z = 3.
22,500 mock spectra.
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Lya RT includes Laursen’s dust model etc. The mocks are now constructed with peeling off.
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A comparison to the Lyman Alpha Spectral Database

(a) GP2237+1336 (b) GP1249+1234 (c) SDSS)J1025%3622 (d) GP1244+02'
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Generally, tens of mocks produce an acceptable match to any observation.



Distribution of typical line shapes in the mocks (of one galaxy)
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Blue-peak to total flux ratio

Mocks are generally consistent
with observations, with a majority
of red, asymmetric lines.

I Less than 20% double peaks have
a (moderately) dominant blue peak
— Half double peaks have ~25-45%
flux in the blue peak

About 20% double peaks have a

marginally detectable blue peak.



How can one single simulated galaxy fit so many observations ?

1. Line-of-sight / orientation effects.
2. Time evolution : star-formation / feedback cycle.



The distribution of line shapes varies with inclination

Fixed time, varying directions \
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Very red (blue) lines are preferentially seen face-on (edge-on).

The majority of ordinary double peaks are seen in no preferred direction.




The distribution of line shapes varies with time
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There is always ~ 50% of ordinary double peaks.

Very red or very blue profiles appear at different times.



The line shape is related to an inflow and outflow cycle

18
time [Gyr]

Outflowing gas
Inflowing gas

Accretion phases produce bluer profiles.

Accretion leads to star formation and outflows,
which produce redder lines.

When outflows stop, cold streams reform ...



The line shape is related to an inflow and outflow cycle

Accretion phases produce bluer profiles.

Accretion leads to star formation and outflows,
which produce redder lines.

When outflows stop, cold streams reform ...
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The line shape is related to an inflow and outflow cycle

Accretion phases produce bluer profiles.

Accretion leads to star formation and outflows,
which produce redder lines.

When outflows stop, cold streams reform ...




What processes drive the line shape ?

1. Resonant scattering in the ISM and inner CGM.
2. Screening by the outer CGM.



Resonant transfert out to 0.2 x Rvir : the ISM and inner CGM
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The lines emerging from the ISM and inner CGM (<0.2 Ryvir) are broadened and
redshifted by resonant scattering effects. The line shape depends on time and
orientation in connection with outflows / inflows at 0.2 Rvir. The luminosity is
L mostly driven by the very recent star formation history (not escape frac).
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The role of the outer CGM : from 0.2 x Ruvir 10 3 X Ruvir
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The outer CGM finishes shaping the Lya line mostly by carving a deep

absorption line. The velocity of this absorption line depends on the kinematic

properties of the volume-filling component of the large-scale CGM.




Does the Lya line shape constrain flows of gas in the CGM ?



LOS Mass fraction

LOS Volume fraction

Can we constrain gas flows with Lya 7
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Lines with a dominant blue peak have
most of the line-of-sight gas inflowing,
both in terms of mass and volume.
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Very red profiles have most of the
line-of-sight volume filled with
outflowing gas, even though most of
the line-of-sight mass is static or
inflowing.

.

The rest is a fairly balanced mix...




One last thing before the end ...



The numerical tools (RAMSES & RASCAS) used in this talk are public

RASCAS has a new set of tutorials which make it easy to compute scattering through

ad-hoc geometries.
https://qit-cral.univ-lyon1.fr/rascas/rascas/-/blob/SaasFee/doc/README.md
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Outputs can be 1D spectra, 2D images, 3D data cubes. Lines can be anything (Lya, Mgll, ...)


https://git-cral.univ-lyon1.fr/rascas/rascas/-/blob/SaasFee/doc/README.md

Summary

- Simulations can finally reproduce the diversity of observed Lya line shapes ! & & %
- Very red lines (B/T < 0.2) are observed at times and in direction of outflows.

- Very blue lines (B/T > 0.5) are observed at times and in directions of inflows.

- Ordinary lines do not inform us on inclination or evolution.

- The shape and width of the line is already coarsely formed within the ISM and inner
CGM.

- The outer CGM acts as a screen which produces more or less blue-shifted
absorption.

- Redder lines are brighter, bluer lines are fainter, which may bias surveys.

The mock spectra from this talk are meant to be shared. Please ask.



