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Introduction

What is a Lyman-Alpha Emitter (LAE)?

e LAEs are Star Forming galaxies with strong Lya Emission (EW > 20 A) in their spectra.

e The UV Lya Emission line (1216 A restframe) is a probe to the presence of a
recombination region Hil.
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Introduction

Limitations of Narrow Band surveys

e They probe small redshift ranges
(100-200 A width), hence small

cosmological volumes.
g 1600 - lye +08
. o 1400
e Affected by OH atmospheric 2 ‘ " " g @
.. . . c . :
emission lines at high z. 5 1200 i [ [
£ 1000+ o 5 g 2
e Severe contamination due to E 4004 o 2 2 o
metal emission lines (CIV, Mgll, 8 o0 :
[OlI], [Olll]) of galaxies at lower 2 i
redshift (Ciardullo+02, Fujita+03, g 400 -
Pentericci+18) T 200-
. . 0 v L v 1 v 1 ¥ 1
e Transient object, such as 7000 8000 9000 10000
variable AGN or supernovae Wavelength (A)

(Dunlop+13)



Introduction

Typical Properties of LAEs

Typical physical and morphological properties of LAEs
(e.g. Ono+10, Hagen+14, Kojima+17, Paulino-Afonso+18, Ouchi+20):

> M-(108-10%Mo  => SFR - (1-10) Molyr Explanation:
i> Due to its scattering nature, the
> E(B-V)-0-0.2 > Re-1kpc Nuiand dust can quench the Lya
emission
Objective:

Can we distinguish LAEs just from
physical and morphological properties?



Our project: CANDELS data

We considered galaxies in GOODS-South
(Merlin+21), COSMOS (Nayyeri+17) and
UDS (Galametz+13).

For each galaxy we have:

(A) The physical properties - SED fitting

Santini+22:

SFH(t) ~ (t¥T)exp(—t/T), Chabrier+03 IMF
Calzetti+00 law for dust extinction
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(B) The morphological properties (van der
Wel+12 fit on Hrieow band)
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Our project: Spectroscopic Data

Spectroscopic Data

Spectroscopic observations available for a subset of the galaxies in CANDELS from multiple
surveys. We collected the Lya flux and equivalent width from the literature:

In total we have the
spectroscopic
information of 1578
galaxies in the range
z €[2,7.9].

From spectroscopic data
we classify them into
LAEs or not (NLAEs)

Field Galaxies LAEs NLAEs

GOODS-S 841 340 501

COSMOS 408 107 301

UDS 329 78 251

Survey N:::::;:f Author
VANDELS 615 Pentericci+18, Garilli+21
VUDS 162 Cassata+15, Tasca+17
MUSE-Deep/-Wide 302 Schmidt+21
CANDELS-z7 109 Pentericci+18
GMASS 20 Kurk+13
GOODS South team 144 Popesso+09, Balestra+10,
Vanzella+18
DEIMOS 41 Hasinger+18
zCOSMOS-Deep 185 Lilly+07, Kashino+22




Fitting archival data:

Examples of measuring Lya Flux and EW Wy = /(1 — F)/Fy)d\.
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Spectroscopic Data

Labeled spectroscopic sample

We focused on the redshift range z € [2.5,4.5], avoiding the effect of the neutral IGM.
Our subset consists of 1115 galaxies.
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Results - Correlations

LAEs tend to have small stellar masses
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Results - Correlations

LAEs tend to be compact galaxies
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Supervised ML and Cross validation

Results - Supervised ML

In supervised ML we need to construct three different subsamples (training, validation and test sets):

e Our algorithm will know the correct labelling of the set data;
e will be optimized on the set score;
e its final performances will be tested on the independent test set.

All Data

Validation

Test

(TP +TN)
Accuracy =
(TP +FP + TN + FN) Training
TP - True Positives TN - True Negatives

FP - False Positives FN - False Negatives 60(%

20%

20%




Supervised ML and Cross validation

We opted for a 5-fold cross validation approach:

® A modelis trained using 4 of the folds as
training data;

® The resulting model is validated on the
remaining fold of the training set;

e The final performances are measured on
the independent test set.

Results - Supervised ML
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Results - Supervised ML

Supervised ML and Cross validation

In supervised ML we need to construct three different subsamples (training, validation and test sets):

Our algorithm will know the correct labelling of the training set data, will be optimized on the validation set score
and its final perfgues 1/l be tested on the independent test set.

This have the advantage to increase
2 the number of samples which can be
S | used for learning the model.
FP - Fals! AN |t is of key importance when applying
We opted fo AT ML to small datasets, like in our case.

Finding Parameters

e A modelis trained using 4 of the folds as spiit3 | Fold1 || Fold2 |-| Fold4 | Fold5 |
training data; spiit4 | Fold1 || Fold2 || Fold3 \_

e the resulting model is validated on the
remaining part of the data

Spiits | Fold1 || Fold2 || Fold3 || Fold4 || Folds |

Final evaluation { Test data




Galaxies in the dataset
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Decision Tree classifier

It is a binary recursive partition of the
features’ space. The goal is to find the
optimal partition so that different classes
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Decision Tree classifier

It is a binary recursive partition of the
features’ space. The goal is to find the
optimal partition so that different classes  z.<«0;
are segregated in different

hyper-rectanglgs

Galaxies in the dataset
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Random Forest is a powerful ML
classifier, which is transparent and can
| be successfully applied to predict
never seen data.
It can ALSO manage the classification

improve cle Bl of a dataset with unbalanced classes.
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Results - Supervised ML

Random Forest Classifier

Optimal hyper-parameters: 0.251
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Results - Supervised ML

Random Forest Classifier
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Results - Supervised ML

Random Forest Classifier

Random Forest succeeds in

recognizing the correlations
found in data.
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Possible applications:
topology of Reionization - LAEs clustering

By drawing informed
predictions on LAE
candidates, we can plan
successful “blind”
spectroscopic surveys.

In turn this will open the
possibility to
systematically study the
spatial overdensities of
confirmed LAES, probing
the spatial distribution
scenario of the ionized
gas during the Epoch of
Reionization.

Future
Prospects

Jung+21

After reionizationz<6 «——

Transparent IGM to Lya

after reionization

®o

Reionization epoch z> 6

Neutral
IGM

Lya from UV faint

galaxies absorbed

Lya from UV bright
galaxies escapes

*Faint galaxies (under detection limits)
contributing to the larger ionized
structures around UV bright galaxies
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ML Performances and the training sample
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Results - Supervised ML

This performances
are the best we
could achieve
given the current
number of galaxies
with a
spectroscopic
follow-up.



Lya Radiative Transfer in the ISM

Intensity (arbitrary units)

Dijkstra +17

Expanding

Static

Collapsing 1

Introduction

_Verhamme et al. +06
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Parameters: NHI, Ushells Tdust



Future
Prospects

Topology of Reionization - LAEs clustering

21-cm S|gnal expected from SKA in the late 2020s gaIaX|es Lya signal map obtained from simulations




