

Identifying Lyα emitters by learning from post Reionization-era galaxies in the CANDELS survey

Lorenzo Napolitano (lorenzo.napolitano@inaf.it)

Supervisor: L. Pentericci **Collaborators:** A. Calabrò, P. Santini, M. Castellano, S. Mascia, et al.

Introduction

What is a Lyman-Alpha Emitter (LAE)?

- LAEs are Star Forming galaxies with strong Ly α Emission (EW > 20 Å) in their spectra.
- The UV Lyα Emission line (1216 Å restframe) is a probe to the presence of a recombination region HII.

Spectroscopy is needed to confirm LAE candidates.

Candidates are often pre-selected through Narrow Band (NB) surveys through a colour excess (BB-NB).

$$z = \frac{\lambda_{NB}}{1216\text{\AA}} - 1$$

Introduction

Limitations of Narrow Band surveys

- They probe small redshift ranges (100-200 Å width), hence small cosmological volumes.
- Affected by OH atmospheric emission lines at high z.
- Severe contamination due to metal emission lines (CIV, MgII, [OII], [OIII]) of galaxies at lower redshift (Ciardullo+02, Fujita+03, Pentericci+18)
- Transient object, such as variable AGN or supernovae (Dunlop+13)

Introduction

Typical Properties of LAEs

Typical physical and morphological properties of LAEs (e.g. Ono+10, Hagen+14, Kojima+17, Paulino-Afonso+18, Ouchi+20):

→ $M \sim (10^8 - 10^9) M_{\odot}$ → $SFR \sim (1-10) M_{\odot}/yr$ → $E(B-V) \sim 0 - 0.2$ → $Re \sim 1 \text{ kpc}$ Explanation: Due to its scattering nature, the NHI and dust can quench the Lya emission

Objective:

Can we distinguish LAEs just from physical and morphological properties?

Our project: CANDELS data

Physical & Morphological Data

We considered galaxies in GOODS-South (Merlin+21), COSMOS (Nayyeri+17) and UDS (Galametz+13).

For each galaxy we have:

(A) The **physical** properties - SED fitting Santini+22:

SFH(t) ~ $(t^2/T)exp(-t/T)$, Chabrier+03 IMF Calzetti+00 law for dust extinction

- Stellar Mass
- E(B-V)

SFRMetallicity

Age

(B) The **morphological** properties (van der

Wel+12 fit on HF160w band)

- Re Sérsic index
- projected axis ratio

Spectroscopic Data

Our project: Spectroscopic Data

Spectroscopic observations available for a subset of the galaxies in CANDELS from multiple surveys. We collected the Ly α flux and equivalent width from the literature:

In total we have the spectroscopic information of 1578 galaxies in the range $z \in [2,7.9]$. From spectroscopic data we classify them into LAEs or not (NLAEs)				Survey	Number of galaxies	Author
				VANDELS	615	Pentericci+18, Garilli+21
				VUDS	162	Cassata+15, Tasca+17
				MUSE-Deep/-Wide	302	Schmidt+21
				CANDELS-z7	109	Pentericci+18
				GMASS	20	Kurk+13
Field	Galaxies	LAEs	NLAEs	GOODS South team	144	Popesso+09, Balestra+10, Vanzella+18
GOODS-S	841	340	501	DEIMOS	41	Hasinger+18
COSMOS UDS	408 329	107 78	301 251	zCOSMOS-Deep	185	Lilly+07, Kashino+22

Fitting archival data:

Spectroscopic Data

Examples of measuring Ly α Flux and EW V

$$W_\lambda = \int (1-F_\lambda/F_0) d\lambda.$$

Spectroscopic Data

Labeled spectroscopic sample

We focused on the redshift range $z \in [2.5, 4.5]$, avoiding the effect of the neutral IGM. Our subset consists of 1115 galaxies.

Results - Correlations

LAEs tend to have small stellar masses

Results - Correlations

LAEs tend to be compact galaxies

Supervised ML and Cross validation

In supervised ML we need to construct three different subsamples (training, validation and test sets):

- Our algorithm will know the correct labelling of the training set data;
- will be optimized on the validation set score;
- its final performances will be tested on the independent test set.

Supervised ML and Cross validation

We opted for a 5-fold cross validation approach:

• A model is trained using 4 of the folds as training data;

• The resulting model is validated on the remaining fold of the training set;

 The final performances are measured on the independent test set.

Supervised ML and Cross validation

In supervised ML we need to construct three different subsamples (training, validation and test sets):

Our algorithm will know the correct labelling of the training set data, will be optimized on the validation set score and its final performent test set.

This have the advantage to increase + F the number of samples which can be used for learning the model. • N It is of key importance when applying on appr ML to small datasets, like in our case. We opted fo

A model is trained using 4 of the folds as training data;

Acc

TP - Tru

FP - Fals

the resulting model is validated on the remaining part of the data

Decision Tree classifier

It is a binary recursive partition of the features' space. The goal is to find the optimal partition so that different classes are segregated in different hyper-rectangles.

It is transparent but it suffers from the overfitting problem.

Random Forest classifier

Breiman+01 introduced this ensemble learning classifier that combines multiple decision trees to improve classification performance.

- Each tree in the forest is slightly different from the others.
- During prediction each tree votes. The final prediction is the majority vote of all the trees.

 During prediction each tree votes. The final prediction is the majority vote of all the trees.

Random Forest Classifier

Optimal hyper-parameters: n_estimators = 500 max_features = 3 max_depth = 20

Cross Validation accuracy: 79.4 ± 3.6%

Test accuracy: 79.7 ± 2.1%

Random Forest Classifier

Random Forest Classifier

Possible applications: topology of Reionization - LAEs clustering

By drawing informed predictions on LAE candidates, we can plan successful "blind" spectroscopic surveys.

In turn this will open the possibility to systematically study the spatial overdensities of confirmed LAEs, probing the spatial distribution scenario of the ionized gas during the Epoch of Reionization.

Future

Prospects

"Probing the Epoch of Reionization with the first galaxies"

Supervisor: Prof. Laura Pentericci (Sapienza) Co-Supervisor: Dr. Marco Castellano (INAF-OAR)

Thank you for your attention

ML Performances and the training sample

This performances are the best we could achieve given the current number of galaxies with a spectroscopic follow-up.

Ly α Radiative Transfer in the ISM ^{Introduction}

Parameters: $N_{\rm HI}, v_{\rm shell}, \tau_{\rm dust}$

Future Prospects

Topology of Reionization - LAEs clustering

galaxies Ly α signal map obtained from simulations 21-cm signal expected from SKA in the late 2020s Lidz+ 2009