
Louise Seeyave, 18 April 2023 
Supervisors: Stephen Wilkins, Peter Thomas 
University of Sussex

Ionising Properties of 
Galaxies in the EoR
FLARES: First Light And Reionisation 
Epoch Simulations



Outline
1. Introduction:  and 


2. Theory


3. Simulations and observations


4. FLARE simulations


5. Ionising properties of galaxies in FLARES


6. Conclusion

·Nion,intr ξion



Sources of reionisation

Credit: Robertson et al. 2010, Nature



Sources of reionisation
Stars and AGN in high-redshift galaxies

Credit: Robertson et al. 2010, Nature



Sources of reionisation
Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

Credit: Robertson et al. 2010, Nature



Sources of reionisation
Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

• What affects the amount of ionising radiation produced by a galaxy?

Credit: Robertson et al. 2010, Nature



Sources of reionisation
Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

• What affects the amount of ionising radiation produced by a galaxy?

• How much ionising radiation escapes into the IGM?

Credit: Robertson et al. 2010, Nature



Sources of reionisation
Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

• What affects the amount of ionising radiation produced by a galaxy?

• How much ionising radiation escapes into the IGM?

Credit: Robertson et al. 2010, Nature



Ionising properties of a source



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Escape fraction: fraction of 
ionising photons that escape 
the galactic environment

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Escape fraction: fraction of 
ionising photons that escape 
the galactic environment

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced

·Nion,intr = ξion × LUV



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Escape fraction: fraction of 
ionising photons that escape 
the galactic environment

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced

·Nion,intr = ξion × LUV

Ionising photon production efficiency: rate at which all 
ionising photons are produced per unit far-UV luminosity



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Escape fraction: fraction of 
ionising photons that escape 
the galactic environment

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced

·Nion,intr = ξion × LUV

Ionising photon production efficiency: rate at which all 
ionising photons are produced per unit far-UV luminosity

Intrinsic far-UV luminosity



Ionising properties of a source

·Nion,esc = fesc × ·Nion,intr

Escaping ionising emissivity: rate at which escaping ionising photons are produced

Escape fraction: fraction of 
ionising photons that escape 
the galactic environment

Intrinsic ionising emissivity: rate at which 
all ionising photons are produced

·Nion,intr = ξion × LUV

Ionising photon production efficiency: rate at which all 
ionising photons are produced per unit far-UV luminosity

Intrinsic far-UV luminosity



Ionising properties of a source

Intrinsic ionising emissivity:
·Nion,intr

ξion =
·Nion,intr

LUV
Ionising photon production efficiency:

Specific ionising emissivity:
·Nion,intr /M*



Ionising properties of a source

Intrinsic ionising emissivity:
·Nion,intr

ξion =
·Nion,intr

LUV
Ionising photon production efficiency:

Specific ionising emissivity:
·Nion,intr /M*



Outline
1. Introduction: :  and 


2. Theory 

3. Simulations and observations


4. FLARE simulations


5. Ionising properties of galaxies in FLARES


6. Conclusion

·Nion,intr ξion



SFH and Z
SF duration: galaxy has experienced  Myr of continuous star formation
x



SFH and Z



SFH and Z
SPS model: binary v2.2.1 BPASS (Stanway & Eldridge 2018)



SPS model
• BPASS v2.2.1 — binary (Stanway & Eldridge 2018)


• BC03 (Bruzual & Charlot 2003)


• FSPS v3.2 (Conroy & Gunn 2010)



IMF
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Observing ξion
• Estimate  from Balmer recombination lines (using spectroscopy or 

estimated from colours)


H  — e.g. Bouwens et al. 2016, Harikane et al. 2018, Stefanon et al. 2022


H  — e.g. Matthee et al. 2022, Fujimoto et al. 2023


• SED fitting


E.g. Castellano et al. 2022, Endsley et al. 2022, Tang et al. 2023

·Nion,intr

α

β
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FirstLight — Ceverino et al. 2018


SC SAM — Yung et al. 2020
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FLARES

• 40 spherical regions (radius 14 Mpc) 
selected from a large (3.2cGpc)  dark 
matter-only parent box


• Rerun with hydrodynamics (EAGLE 
physics model; Schaye et al. 2015)


• Region selection biased towards highly 
over- and under-dense regions


• Statistical weighting scheme recovers 
the distribution of overdensities in the 
parent box

h−1
3

Hydrodynamic zoom simulations in the EoR (z>5)

FLARES 
re-simulations

All regions

Extreme 
under-dense Mean

Extreme 
over-dense
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FLARES

Able to efficiently simulate 
many massive galaxies, 
which are more accessible 
to observations. 20x
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Forward-modelling
Vijayan et al. 2021:

1. Associate each stellar particle with a stellar SED based on its age and metallicity 


• SPS model:  binary BPASS v2.2.1, Stanway & Eldridge 2018


• Initial mass function: Chabrier 2003

2. Add nebular emission:


• Associate each stellar particle with a HII region


• Gas spectrum from Cloudy photoionisation code, assume fesc = 0

3. Add dust (two components): 


• Contribution of dust in the diffuse ISM


• For young (<10 Myr)  stellar particles, include birth cloud dust extinction
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Intrinsic ionising emissivity:
·Nion,intr

ξion =
·Nion,intr

LUV
Ionising photon production efficiency:

Specific ionising emissivity:
·Nion,intr /M*

Note:  and  are obtained from pure stellar SEDs·Nion,intr LUV
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(Now including AGN)

Intrinsic LyC 
luminosity 
function
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Specific 
emissivity & 
age
age: initial mass-weighted 
median stellar age



Specific 
emissivity & Z

Z: initial mass-weighted 
median stellar metallicity
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Conclusion
• Of the galaxy sample considered in FLARES, stellar emission from the lower-

mass ( ) population produces the most ionising radiation.


• AGN contribute a smaller fraction but extend the LyC luminosity function to 
higher values.


• The specific emissivity of galaxies decreases with increasing age and metallicity 
(  onwards).


• Production efficiency increases with decreasing far-UV luminosity and evolves 
weakly with redshift.


• FLARES does not predict the high values of ionising photon production 
efficiency that have recently been measured.

M* ≈ 108 − 109 M⊙

Z = 10−2.5



Production  
efficiency & β



Production  
efficiency &  
[OIII] EW
[OIII] EW: combined equivalent 
widths of the [OIII] doublet 
([OIII] )λλ4960,5008Å
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*Require  to comment on 
contribution to reionisation!

fesc



ξion,Hα


