Louise Seeyave, 18 April 2023 Supervisors: Stephen Wilkins, Peter Thomas University of Sussex

Ionising Properties of Galaxies in the EoR FLARES: First Light And Reionisation Epoch Simulations

Outline

- 1. Introduction: $N_{\text{ion intr}}$ and ·
\ N _{ion,intr} and ξ _{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Stars and AGN in high-redshift galaxies

Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?
-

-
-

• What affects the amount of ionising radiation produced by a galaxy?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?
-
- How much ionising radiation escapes into the IGM?

-
-

• What affects the amount of ionising radiation produced by a galaxy?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?
-
- How much ionising radiation escapes into the IGM?

-
-

• What affects the amount of ionising radiation produced by a galaxy?

$$
\dot{N}_{\rm ion,esc} = f_{\rm esc} \times \dot{N}_{\rm ion, intr}
$$

$$
\dot{N}_{\rm ion,esc} = f_{\rm esc} \times \dot{N}_{\rm ion,intr}
$$

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\nIntrinsic

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

Sic ionising emissivity: rate at which *all* ionising photons are produced

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\n**Escape fraction**: fraction of
ionising photons that escape *all* ioni
the galactic environment

Sic ionising emissivity: rate at which ising photons are produced

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\n**Escape fraction**: fraction of
\nionising photons that escape
\nthe galactic environment

\n
$$
\dot{N}_{\text{ion,intr}}
$$

Sic ionising emissivity: rate at which ising photons are produced

 $N_{\text{ion,intr}} = \xi_{\text{ion}} \times L_{\text{UV}}$

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\n**Escape fraction**: fraction of ionising photos that escape the galactic environment

\n
$$
\dot{N}_{\text{ion,intr}} = \xi_{\text{ion}} \times L_{\text{UV}}
$$

Ionising photon production efficiency: rate at which *all* ionising photons are produced per unit far-UV luminosity

Ity: rate at which *aduced*

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\n**Escape fraction**: fraction of
\nionising photons that escape
\nthe galactic environment

\n
$$
\dot{N}_{\text{ion, int}}
$$

Ionising photon production efficiency: rate at which all Intrinsic far-UV luminosity ionising photons are produced per unit far-UV luminosity

Integral is a set ionism Integral Sic ionising emissivity: rate at which ising photons are produced

$$
\dot{N}_{\text{ion,intr}} = \xi_{\text{ion}} \times L_{\text{UV}}
$$

Escaping ionising emissivity: rate at which *escaping* ionising photons are produced

Intrinsic ionising emissivity: rate at which ising photons are produced

$$
\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}
$$
\n**Escape fraction**: fraction of
\nionising photons that escape
\nthe galactic environment

\n

$$
\dot{N}_{\rm ion, intr} = \dot{\xi}_{\rm ion} \times L_{\rm UV}
$$

Ionising photon production efficiency: rate at which *all* ionising photons are produced per unit far-UV luminosity **Intrinsic far-UV luminosity**

Intrinsic ionising emissivity:

· *N*ion,intr

.
、 *N*ion,intr/*M**

Ionising photon production efficiency:

Specific ionising emissivity:

Intrinsic ionising emissivity:

· *N*ion,intr

·
。
\ *N*ion,intr/*M**

Ionising photon production efficiency:

Specific ionising emissivity:

Outline

1. Introduction: $N_{\text{ion intr}}$ and 。
\ N _{ion,intr} and ξ _{ion}

2. Theory

- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

SFH and Z

SF duration: galaxy has experienced *x* Myr of continuous star formation

SFH and Z

SFH and Z

SPS model: binary v2.2.1 BPASS (Stanway & Eldridge 2018)

SPS model

- BPASS v2.2.1 binary (Stanway & Eldridge 2018)
- BC03 (Bruzual & Charlot 2003)
- FSPS v3.2 (Conroy & Gunn 2010)

IMF

Outline

- 1. Introduction: $N_{\text{ion intr}}$ and 。
\ N _{ion,intr} and ξ _{ion}
- 2. Theory
- **3. Simulations and observations**
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Observing *ξ*ion

- Estimate $N_{\rm ion,intr}$ from Balmer recombination lines (using spectroscopy or estimated from colours) 。
\ *N*ion,intr
	-
	- H β e.g. Matthee et al. 2022, Fujimoto et al. 2023
- **SED** fitting
	- E.g. Castellano et al. 2022, Endsley et al. 2022, Tang et al. 2023

 $H\alpha$ $-$ e.g. Bouwens et al. 2016, Harikane et al. 2018, Stefanon et al. 2022

Simulating *ξ*ion

Simulating *ξ*ion

Bluetides — Wilkins et al. 2016

Simulating *ξ*ion

Bluetides — Wilkins et al. 2016

FirstLight — Ceverino et al. 2018

25.6 **Simulating** *ξ*ion 25.4 25.2 Bluetides — Wilkins et al. 2016 25.0 25.6 FirstLight — Ceverino et al. 2018 25.4 $\binom{1}{1}$ 25.2 $\frac{1}{2}$ **SC SAM — Yung et al. 2020**25.0 $log(\xi_{ion}/(erg$ 25.6

25.4

25.2

Outline

- 1. Introduction: $N_{\text{ion intr}}$ and ·
\ N _{ion,intr} and ξ _{ion}
- 2. Theory
- 3. Simulations and observations

4. FLARE simulations

- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Hydrodynamic zoom simulations in the EoR (z>5)

Lovell et al. 2021

Hydrodynamic zoom simulations in the EoR (z>5)

• 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box 3

Lovell et al. 2021

Hydrodynamic zoom simulations in the EoR (z>5)

- 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box 3
- Rerun with hydrodynamics (EAGLE physics model; Schaye et al. 2015)

Lovell et al. 2021

- 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box 3
- Rerun with hydrodynamics (EAGLE physics model; Schaye et al. 2015)
- Region selection biased towards highly over- and under-dense regions

- 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box 3
- Rerun with hydrodynamics (EAGLE physics model; Schaye et al. 2015)
- Region selection biased towards highly over- and under-dense regions
- Statistical weighting scheme recovers the distribution of overdensities in the parent box

Able to e fficiently simulate many massive galaxies, which are more accessible

-
-
-
-
-
-

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
	- SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
	- Initial mass function: Chabrier 2003

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
	- SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
	- Initial mass function: Chabrier 2003
- 2. Add nebular emission:
	- Associate each stellar particle with a HII region
	- Gas spectrum from Cloudy photoionisation code, assume $f_{\rm esc}=0$

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
	- SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
	- Initial mass function: Chabrier 2003
- 2. Add nebular emission:
	- Associate each stellar particle with a HII region
	- Gas spectrum from Cloudy photoionisation code, assume $f_{\rm esc}=0$
- 3. Add dust (two components):
	- Contribution of dust in the diffuse ISM
	- For young (<10 Myr) stellar particles, include birth cloud dust extinction

Intrinsic ionising emissivity:

· *N*ion,intr

.
、 *N*ion,intr/*M**

Ionising photon production efficiency:

Specific ionising emissivity:

Intrinsic ionising emissivity:

· *N*ion,intr

.
、 *N*ion,intr/*M**

Ionising photon production efficiency:

Note: $N_{\rm ion\;intr}$ and $L_{\rm UV}$ are obtained from pure stellar SEDs .
\ $N^{}_{\rm ion, intr}$ and $L^{}_{\rm UV}$

Specific ionising emissivity:

Outline

- 1. Introduction: $N_{\text{ion intr}}$ and **.**
/ $N_{\rm ion, intr}$ and $\xi_{\rm ion}$
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- **5. Ionising properties of galaxies in FLARES**
	- o Intrinsic ionising emissivity
	- Specific intrinsic ionising emissivity
	- Ionising photon production efficiency \bigcirc
- 6. Conclusion

Intrinsic LyC luminosity function

Intrinsic LyC luminosity function

*Stars only, no AGN

Intrinsic LyC luminosity function

 $10^8 < M_* / M_{\odot}$ $10^8 < M_{*}/M_{\odot} + AGN$ $\overline{}$

(Now including AGN)

 $10^8 < M_{*}/M_{\odot}$ $10^8 < M_{*}/M_{\odot} + AGN$ \longrightarrow . . **AGN** $z=5$

Intrinsic LyC luminosity function

Specific emissivity & stellar mass

Specific emissivity & age

age: initial mass-weighted median stellar age

Production efficiency & L_{UV}

- Bouwens+ 16
- Bunker+ 23
- Castellano+ 22
- Endsley+ 21
- Endsley+ 22
- Fujimoto+23
- Harikane+ 18
- $Lam+19$
- Matthee+ 22
- $Ning+22$ $\mathbf O$
	- Schaerer+22
- Stefanon+22
- Tang $+23$
- **FLARES**

 $H\alpha$ O $H\beta$ \Box **SED fitting** $\boldsymbol{\nabla}$ collection / stack individual

Production efficiency & z

- Bouwens+ 16 Bunker+ 23 $\boldsymbol{\nabla}$ Castellano+ 22 $\boldsymbol{\nabla}$ Endsley+ 21 $\boldsymbol{\nabla}$ Endsley+ 22 Fujimoto+ 23 ×. Harikane+ 18 \bullet Matthee+ 22 ш $Ning+22$ O Schaerer+ 22 Simmonds+23 Stark+ 16 $\boldsymbol{\nabla}$ Stefanon+22 $Sun+22$ O Tang $+23$ $\boldsymbol{\nabla}$ Yung + 20 ($log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1}) \sim 29.4$) Yung + 20 ($log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1}) \sim 27.4$) $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$ FLARES $28 < log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1}) < 28.5$ FLARES $28.5 < log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1}) < 29$ FLARES $29 < log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1}) < 29.5$
	- FLARES $29.5 < log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1})$

Outline

- 1. Introduction: $N_{\text{ion intr}}$ and ·
\ N _{ion,intr} and ξ _{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- **6. Conclusion**

FLARES Papers

I. Environmental dependence of high-redshift galaxy evolution - **Lovell+2021** II. The Photometric Properties of High-Redshift Galaxies - **Vijayan+2021** III. The Properties of Massive Dusty Galaxies at Cosmic Dawn - **Vijayan+2022** IV. The Size Evolution of Galaxies at z ≥ 5 - **Roper+2022** V. The Redshift Frontier - **Wilkins+2022** VI. The Colour Evolution of Galaxies z=5-15 - **Wilkins+2022** VII. Star Formation and Metal Enrichment Histories - **Wilkins+2022** VIII. The Emergence of Passive Galaxies in the Early Universe - **Lovell+2022** X. Environmental Galaxy Bias and Survey Variance at High Redshift - **Thomas+2022** XI. [OIII] emitting galaxies at 5>z>10 - **Wilkins+2022** XII. The Lyman-Continuum Emission of High-Redshift Galaxies **- Seeyave+in-prep** XIII. AGN **- Kuusisto+in-prep** XIV. Euclid Predictions **- Kuusisto+in-prep**

-
-

-
-
- IX. The Physical Mechanisms Driving Compact Galaxy Formation and Evolution **Roper+2022**
	-

FLARES Papers

I. Environmental dependence of high-redshift galaxy evolution - **Lovell+2021** II. The Photometric Properties of High-Redshift Galaxies - **Vijayan+2021** III. The Properties of Massive Dusty Galaxies at Cosmic Dawn - **Vijayan+2022** IV. The Size Evolution of Galaxies at z ≥ 5 - **Roper+2022** V. The Redshift Frontier - **Wilkins+2022** VI. The Colour Evolution of Galaxies z=5-15 - **Wilkins+2022** VII. Star Formation and Metal Enrichment Histories - **Wilkins+2022** VIII. The Emergence of Passive Galaxies in the Early Universe - **Lovell+2022** IX. The Physical Mechanisms Driving Compact Galaxy Formation and Evolution - **Roper+2022** X. Environmental Galaxy Bias and Survey Variance at High Redshift - **Thomas+2022** XI. [OIII] emitting galaxies at 5>z>10 - **Wilkins+2022** XII. The Lyman-Continuum Emission of High-Redshift Galaxies **- Seeyave+in-prep** XIII. AGN **- Kuusisto+in-prep** XIV. Euclid Predictions **- Kuusisto+in-prep**

-
-
-

-
-
-
-

Conclusion

• Of the galaxy sample considered in FLARES, stellar emission from the lowermass ($M_* \approx 10^8 - 10^9 \text{ M}_{\odot}$) population produces the most ionising radiation.

• AGN contribute a smaller fraction but extend the LyC luminosity function to

- $M_* \approx 10^8 10^9 \text{ M}_\odot$
- higher values.
- $(Z = 10^{-2.5}$ onwards). $Z = 10^{-2.5}$
- weakly with redshift.
- FLARES does not predict the high values of ionising photon production efficiency that have recently been measured.

• The specific emissivity of galaxies decreases with increasing age and metallicity

• Production efficiency increases with decreasing far-UV luminosity and evolves

Production efficiency & *β*

Production efficiency & [OIII] EW

[OIII] EW: combined equivalent widths of the [OIII] doublet ([OIII]*λλ*4960,5008Å)

46.5 46.0 $\mathsf{M}_{\odot}^{-1})$ 45.5 \overline{S}^{-1} 45.0 $og_{10}(\dot{N}_{\text{ion}}/M_{\star}$ / 44.5 44.0 43.5 43.0 26.0 $S^{-1}HZ^{-1})$ 25.5 $^{-1}/e$ rgs 25.0 $log_{10}(\xi_{\text{ion}}/s)$ 24.5 24.0

Total intrinsic emissivity: Stars vs. AGN

 \boldsymbol{Z}

Total intrinsic emissivity: Stars vs. AGN

Lower-mass galaxies $(M_{*} = 10^{8} - 10^{9} M_{\odot})$ are the main source of ionising photons $M_* = 10^8 - 10^9$ M_o

Z

Total intrinsic emissivity: Stars vs. AGN

Lower-mass galaxies $(M_{*} = 10^{8} - 10^{9} M_{\odot})$ are the main source of ionising photons $M_* = 10^8 - 10^9$ M_o

*Require $f_{\rm esc}$ to comment on contribution to reionisation!

Z

*ξ*ion,H*α*

