Ionising Properties of Galaxies in the EoR FLARES: First Light And Reionisation Epoch Simulations

Louise Seeyave, 18 April 2023 Supervisors: Stephen Wilkins, Peter Thomas University of Sussex

Outline

- 1. Introduction: $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Stars and AGN in high-redshift galaxies

Stars and AGN in high-redshift galaxies

• To what extent do each contribute?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?

What affects the amount of ionising radiation produced by a galaxy?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?
- How much ionising radiation escapes into the IGM?

What affects the amount of ionising radiation produced by a galaxy?

Stars and AGN in high-redshift galaxies

- To what extent do each contribute?
- How much ionising radiation escapes into the IGM?

• What affects the amount of ionising radiation produced by a galaxy?

$$\dot{N}_{\rm ion,esc} = f_{\rm esc} \times \dot{N}_{\rm ion,intr}$$

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\rm ion,esc} = f_{\rm esc} \times \dot{N}_{\rm ion,intr}$$

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\rm ion,esc} = f_{\rm esc} \times \dot{N}_{\rm ion,intr}$$

Intrinsic ionising emissivity: rate at which *all* ionising photons are produced

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{ion,esc} = f_{esc} \times \dot{N}_{ion,intr}$$

Escape fraction: fraction of **Intrine**
onising photons that escape *all* ioni
he galactic environment

sic ionising emissivity: rate at which ising photons are produced

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}$$

Escape fraction: fraction of
ionising photons that escape
the galactic environment
 \dot{N}_{ion}

sic ionising emissivity: rate at which ising photons are produced

 $V_{\text{ion,intr}} = \xi_{\text{ion}} \times L_{\text{UV}}$

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}$$

Escape fraction: fraction of
onising photons that escape
he galactic environment
 $\dot{N}_{\text{ion,intr}} = \xi_{\text{ion}} \times L_{\text{UV}}$

Ionising photon production efficiency: rate at which *all* ionising photons are produced per unit far-UV luminosity

ity: rate at which duced

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}$$

Escape fraction: fraction of
onising photons that escape
he galactic environment
 $\dot{N}_{\text{ion intr}}$

Ionising photon production efficiency: rate at which *all* **Intrinsic far-UV luminosity** ionising photons are produced per unit far-UV luminosity

sic ionising emissivity: rate at which nising photons are produced

$$t_{\rm tr} = \xi_{\rm ion} \times L_{\rm UV}$$

Escaping ionising emissivity: rate at which escaping ionising photons are produced

$$\dot{N}_{\text{ion,esc}} = f_{\text{esc}} \times \dot{N}_{\text{ion,intr}}$$

Escape fraction: fraction of
onising photons that escape
the galactic environment
 $\dot{N}_{\text{ion,intr}}$

Ionising photon production efficiency: rate at which *all* **Intrinsic far-UV luminosity** ionising photons are produced per unit far-UV luminosity

sic ionising emissivity: rate at which nising photons are produced

$$t_{\rm r} = \xi_{\rm ion} \times L_{\rm UV}$$

Intrinsic ionising emissivity: $\dot{N}_{ion,intr}$

Specific ionising emissivity: $\dot{N}_{\rm ion,intr}/M_*$

Intrinsic ionising emissivity: $\dot{N}_{ion,intr}$

Specific ionising emissivity: $\dot{N}_{\rm ion,intr}/M_{*}$

Ionising photon production efficiency:

Outline

1. Introduction: : $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}

2. Theory

- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

SFH and Z

SF duration: galaxy has experienced *x* Myr of continuous star formation

SFH and Z

SFH and Z

SPS model: binary v2.2.1 BPASS (Stanway & Eldridge 2018)

SPS model

- BPASS v2.2.1 binary (Stanway & Eldridge 2018)
- BC03 (Bruzual & Charlot 2003)
- FSPS v3.2 (Conroy & Gunn 2010)

IMF

Outline

- 1. Introduction: : $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Observing ξ_{ion}

- Estimate $N_{\rm ion,intr}$ from Balmer recombination lines (using spectroscopy or estimated from colours)

 - ^o H β e.g. Matthee et al. 2022, Fujimoto et al. 2023
- SED fitting
 - E.g. Castellano et al. 2022, Endsley et al. 2022, Tang et al. 2023

^o H α – e.g. Bouwens et al. 2016, Harikane et al. 2018, Stefanon et al. 2022

Simulating ξ_{ion}

Simulating ξ_{ion}

Bluetides – Wilkins et al. 2016

Simulating ξ_{ion}

Bluetides — Wilkins et al. 2016

FirstLight – Ceverino et al. 2018

25.6Simulating ξ_{ion} 25.4 25.2 Bluetides – Wilkins et al. 2016 25.025.6FirstLight – Ceverino et al. 2018 25.4 1)) 25.2Ηz SC SAM – Yung et al. 2020 25.0 $og(\xi_{ion} / (erg$ 25.6

25.4

25.2

Outline

- 1. Introduction: $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}
- 2. Theory
- 3. Simulations and observations

4. FLARE simulations

- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

Hydrodynamic zoom simulations in the EoR (z>5)

Lovell et al. 2021

FLARES

Hydrodynamic zoom simulations in the EoR (z>5)

• 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box

Lovell et al. 2021

FLARES

Hydrodynamic zoom simulations in the EoR (z>5)

- 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box
- Rerun with hydrodynamics (EAGLE) physics model; Schaye et al. 2015)

Lovell et al. 2021

FLARES

Hydrodynamic zoom simulations in the EoR (z>5)

- 40 spherical regions (radius 14 h^{-1} Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box
- Rerun with hydrodynamics (EAGLE) physics model; Schaye et al. 2015)
- Region selection biased towards highly over- and under-dense regions

FLARES

Hydrodynamic zoom simulations in the EoR (z>5)

- 40 spherical regions (radius 14 h⁻¹Mpc) selected from a large (3.2cGpc)³ dark matter-only parent box
- Rerun with hydrodynamics (EAGLE physics model; Schaye et al. 2015)
- Region selection biased towards highly over- and under-dense regions
- Statistical weighting scheme recovers the distribution of overdensities in the parent box

Hydrodynamic zoom simulations in the EoR (z>5)

Hydrodynamic zoom simulations in the EoR (z>5)

FLARES

Hydrodynamic zoom simulations in the EoR (z>5)

Able to efficiently simulate many massive galaxies, which are more accessible to observations.

<u>Vijayan et al. 2021:</u>

Vijayan et al. 2021:

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
 - SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
 - Initial mass function: Chabrier 2003

<u>Vijayan et al. 2021:</u>

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
 - SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
 - Initial mass function: Chabrier 2003
- 2. Add nebular emission:
 - Associate each stellar particle with a HII region
 - Gas spectrum from Cloudy photoionisation code, assume $f_{esc} = 0$

Vijayan et al. 2021:

- 1. Associate each stellar particle with a stellar SED based on its age and metallicity
 - SPS model: binary BPASS v2.2.1, Stanway & Eldridge 2018
 - Initial mass function: Chabrier 2003
- 2. Add nebular emission:
 - Associate each stellar particle with a HII region
 - Gas spectrum from Cloudy photoionisation code, assume $f_{esc} = 0$
- 3. Add dust (two components):
 - Contribution of dust in the diffuse ISM
 - For young (<10 Myr) stellar particles, include birth cloud dust extinction

Ionising properties of a source

Intrinsic ionising emissivity: $\dot{N}_{ion,intr}$

Specific ionising emissivity: $\dot{N}_{\rm ion,intr}/M_*$

Ionising properties of a source

Intrinsic ionising emissivity: $\dot{N}_{ion,intr}$

Specific ionising emissivity: $\dot{N}_{\rm ion,intr}/M_*$

Note: $N_{\text{ion,intr}}$ and L_{UV} are obtained from pure stellar SEDs

Outline

- 1. Introduction: $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations

5. Ionising properties of galaxies in FLARES

- Intrinsic ionising emissivity
- Specific intrinsic ionising emissivity
- Ionising photon production efficiency 0
- 6. Conclusion

Intrinsic LyC luminosity function

Intrinsic LyC luminosity function

*Stars only, no AGN

Intrinsic LyC Iuminosity function

 $10^8 < M_*/M_{\odot}$ $10^8 < M_*/M_{\odot} + AGN$ ____

Intrinsic LyC Iuminosity function

(Now including AGN)

 $10^8 < M_*/M_{\odot}$ — 10⁸ < M_*/M_{\odot} + AGN AGN — z=5

Specific emissivity & stellar mass

Specific emissivity & age

age: initial mass-weighted median stellar age

Production efficiency & $L_{\rm UV}$

- Bouwens+ 16
- Bunker+ 23
- Castellano+ 22
- Endsley+ 21
- Endsley+ 22
- Fujimoto+ 23
- Harikane+ 18

- Lam+ 19
- Matthee+ 22
- O Ning+ 22
- Schaerer+ 22
- Stefanon+ 22
- 7 Tang+ 23
- FLARES

Ηα
 Ηβ
 SED fitting
 collection / stack
 individual

22 + 22 + 22

Production efficiency & z

- Bouwens+ 16 Bunker+ 23 ∇ Castellano+ 22 ∇ Endsley+ 21 ∇ Endsley+ 22 Fujimoto+ 23 Harikane+ 18 Matthee+ 22 Ning+ 22 0 Schaerer+ 22 Simmonds+ 23 Stark+ 16 ∇ Stefanon+ 22 Sun+ 22 Ο ∇ Tang+23 Yung + 20 ($\log_{10}(L_{FUV}/\text{ergs s}^{-1}\text{Hz}^{-1}) \sim 29.4$) Yung + 20 ($\log_{10}(L_{FUV}/\text{ergs s}^{-1}\text{Hz}^{-1}) \sim 27.4$) ____ FLARES $28 < \log_{10}(L_{FUV}/\text{ergs s}^{-1}\text{Hz}^{-1}) < 28.5$
 - FLARES 29.5 < $\log_{10}(L_{FUV}/ergs s^{-1}Hz^{-1})$

Outline

- 1. Introduction: $\dot{N}_{\text{ion,intr}}$ and ξ_{ion}
- 2. Theory
- 3. Simulations and observations
- 4. FLARE simulations
- 5. Ionising properties of galaxies in FLARES
- 6. Conclusion

FLARES Papers

I. Environmental dependence of high-redshift galaxy evolution - Lovell+2021 II. The Photometric Properties of High-Redshift Galaxies - Vijayan+2021 III. The Properties of Massive Dusty Galaxies at Cosmic Dawn - Vijayan+2022 IV. The Size Evolution of Galaxies at $z \ge 5$ - **Roper+2022** V. The Redshift Frontier - Wilkins+2022 VI. The Colour Evolution of Galaxies z=5-15 - Wilkins+2022 VII. Star Formation and Metal Enrichment Histories - Wilkins+2022 VIII. The Emergence of Passive Galaxies in the Early Universe - Lovell+2022 IX. The Physical Mechanisms Driving Compact Galaxy Formation and Evolution - Roper+2022 X. Environmental Galaxy Bias and Survey Variance at High Redshift - Thomas+2022 XI. [OIII] emitting galaxies at 5>z>10 - Wilkins+2022 XII. The Lyman-Continuum Emission of High-Redshift Galaxies - Seeyave+in-prep XIII. AGN - Kuusisto+in-prep XIV. Euclid Predictions - Kuusisto+in-prep

FLARES Papers

I. Environmental dependence of high-redshift galaxy evolution - Lovell+2021 II. The Photometric Properties of High-Redshift Galaxies - Vijayan+2021 III. The Properties of Massive Dusty Galaxies at Cosmic Dawn - Vijayan+2022 IV. The Size Evolution of Galaxies at $z \ge 5$ - **Roper+2022** V. The Redshift Frontier - Wilkins+2022 VI. The Colour Evolution of Galaxies z=5-15 - Wilkins+2022 VII. Star Formation and Metal Enrichment Histories - Wilkins+2022 VIII. The Emergence of Passive Galaxies in the Early Universe - Lovell+2022 IX. The Physical Mechanisms Driving Compact Galaxy Formation and Evolution - Roper+2022 X. Environmental Galaxy Bias and Survey Variance at High Redshift - Thomas+2022 XI. [OIII] emitting galaxies at 5>z>10 - Wilkins+2022 XII. The Lyman-Continuum Emission of High-Redshift Galaxies - Seeyave+in-prep XIII. AGN - Kuusisto+in-prep XIV. Euclid Predictions - Kuusisto+in-prep

Conclusion

- higher values.
- $(Z = 10^{-2.5} \text{ onwards}).$
- weakly with redshift.
- FLARES does not predict the high values of ionising photon production efficiency that have recently been measured.

• Of the galaxy sample considered in FLARES, stellar emission from the lowermass ($M_* \approx 10^8 - 10^9 \,\mathrm{M_{\odot}}$) population produces the most ionising radiation.

AGN contribute a smaller fraction but extend the LyC luminosity function to

• The specific emissivity of galaxies decreases with increasing age and metallicity

Production efficiency increases with decreasing far-UV luminosity and evolves

Production efficiency & β

 ∇

 $eta_{ ext{stellar}}$

 eta_{dust}

Production efficiency & [OIII] EW

[OIII] EW: combined equivalent widths of the [OIII] doublet $([OIII]\lambda\lambda4960,5008\text{\AA})$

46.5 46.0 M_{\odot}^{-1}) 45.5 S^{-1} 45.0 og₁₀(Ň_{ion}/M_{*} / 44.5 44.0 43.5 43.0 26.0 $S^{-1}HZ^{-1}$ 25.5 -¹/ergs 25.0 log₁₀(*ξ*ion/S 24.5 24.0

Total intrinsic emissivity: Stars vs. AGN

Ζ

D

Total intrinsic emissivity: Stars vs. AGN

Lower-mass galaxies $(M_* = 10^8 - 10^9 \text{ M}_{\odot})$ are the main source of ionising photons

Ζ

D

Total intrinsic emissivity: Stars vs. AGN

Lower-mass galaxies $(M_* = 10^8 - 10^9 \text{ M}_{\odot})$ are the main source of ionising photons

*Require $f_{\rm esc}$ to comment on contribution to reionisation!

Ζ

D

$\xi_{\text{ion,H}\alpha}$

