THE MISSING PIECE IN THE REIONIZATION Quantifying the ionizing flux of extremely metal-poor massive stars

Marta Lorenzo Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain

18-21 April 2023 OAC, Kolymbari, Crete

- OBA I and II later ш - A **Undefined LC** B9 -4°40' **B8** B7 C B5 DEC (J2000.0) **B**3 B2 42' B1 B0 09 B 08 07 D 06 **R:** H α -band (Massey+2007) G: V-band (Massey+2007) 05 **B:** GALEX FUV 04 White: HI map (Hunter+2012) - 03 10^h11^m12^s 06^s 00^s 10^m54^s 48^s RA (J2000.0)

159 OB stars

Spectroscopy of

Lorenzo et al. (2022), MNRAS, 516, 3

Largest catalogue of resolved massive stars at Z lower than the SMC

159 OB stars

Spectroscopy of

Lorenzo et al. (2022), MNRAS, 516, 3

JEC (J2000.0)

Most of our sample OB stars are located in region B

Spectroscopy of **159** OB stars

Lorenzo et al. (2022), MNRAS, 516, 3

Most of our sample OB stars are located in region B

We also find massive stars isolated and in low gas density regions.

Using the IACOB-GBAT tool

Based on an extensive grid of FASTWIND models

Using the IACOB-GBAT tool

Based on an extensive grid of FASTWIND models

Radiation driven-winds Line-blanketing Spherical symmetry

Using the IACOB-GBAT tool

Based on an extensive grid of FASTWIND models

4

4

LORENZO IN PREP. (2023b) VS. MARTINS ET AL. (2005)

Lorenzo in prep. (2023b)

(see also Martins & Palacios, 2021)

(see also Martins & Palacios, 2021)

DEC (J2000.0)

DEC (J2000.0)

Hα image

Gerasimov et al. (2022)

48^s

I and II

Ш

DEC (J2000.0)

 $Q(H)_{H\alpha} = 1.18 \ 10^{49} \text{cm}^{-2} \text{s}^{-1}$ $Q(H)_{stars} = 5.90 \ 10^{49} cm^{-2} s^{-1}$

 $Q(H)_{H\alpha} \sim 0$ $Q(H)_{stars} = 5.36 \ 10^{49} \text{ cm}^{-2} \text{ s}^{-1}$

 $Q(H)_{H\alpha} \sim 0$ $Q(H)_{stars} = 5.36 \ 10^{49} \text{ cm}^{-2} \text{ s}^{-1}$ $f_{esc} \sim 1$

 $Q(H)_{H\alpha} = 1.95 \ 10^{50} \text{cm}^{-2} \text{s}^{-1}$

B + C + D $Q(H) = 1.95 \ 10^{50} \text{cm}^{-2} \text{s}^{-1}$ $Q(H) = 3.38 \ 10^{50} \text{cm}^{-2} \text{s}^{-1}$

later ٠A **Undefined LC** · B9 B8 - B7 - B5 Β3 B2 - B1 B0 09 08 07 06 05 04 03 14

OBA

I and II

Ш

C

48^s

IONIZING PHOTONS PRODUCED

IONIZING PHOTONS ESCAPING

QUESTIONS FOR DISCUSSION

• Can we assume a uniform model when studying unresolved galaxies?

QUESTIONS FOR DISCUSSION

• Can we assume a uniform model when studying unresolved galaxies?

• Can we use Sextans A as a template of the early galaxies?

QUESTIONS FOR DISCUSSION

• Can we assume a uniform model when studying unresolved galaxies?

• Can we use Sextans A as a template of the early galaxies? How?

MADAU & DICKINSON (2014)

MULTI-OBJECT MASKS

MOS1 run

MOS2 run 0000639938-20140225 GTC118-17B **OSIRIS-BroadBand** PI M. Garcia Sloan_r, Texp=10s 0 IE

BINARY RUNAWAYS?

SPIRE 500 μ**m**

SPIRE 350 μm

SPIRE 250 μm

- O stars
- B stars
- A stars and later types

HST F555W PHOTOMETRY OF SEXTANS A

HOW COMPLETE IS OUR CATALOGUE?

HOW COMPLETE IS OUR CATALOGUE?

