

faculty of science and engineering kapteyn astronomical institute

Modelling the contribution of AGN to reionisation Maxime Trebitsch – Kapteyn Astronomical Institute

in collaboration with Y. **Dubois**, M. **Volonteri**, P. **Dayal**, A. **Hutter**, H. Pfister, C. Cadiou, H. Katz, J. Rosdahl, T. Kimm, C. Pichon, R. Beckmann, J. Devriendt and A. Slyz

April 21st, 2023

A different view of reionisation

Classical picture: quasars are too rare to contribute significantly

- Bright quasars are **too rare** at high-z to reionize the Universe alone
- Faint galaxies ($M_{UV} \le 13$) could provide the bulk of the ionizing budget

Classical picture: quasars are too rare to contribute significantly

- Bright quasars are **too rare** at high-z to reionize the Universe alone
- Faint galaxies ($M_{UV} \le 13$) could provide the bulk of the ionizing budget

Difficult measurements of the high-z AGN LF

- Large effort to constrain the number of faint AGN
- Difficult to identify AGN and remove the contribution from the host galaxy

Maxime Trebitsch - Escape of Lyman radiation from galactic labyrinths - April 21st, 2023

Adams+2019

Uncertainty on the AGN LF = uncertainty on the contribution to the UV background

- Search for high-z faint AGN suggests that they could boost the contribution of AGN to reionization up to ~ 30%
- But this assumes a high f_{esc} for the AGN, and little contribution from the host galaxy

"Wishlist" for the ideal simulation

- *High-resolution*: we want to resolve the structure of the ISM
- Radiation-hydrodynamics: we want to follow the radiation self-consistently
- Large cosmological volume: we want to capture rare objects + the IGM

Problem: this is way too expensive → choose one (or two) of these...

- Post-processing a large cosmological volume (hydro or DM-only)
 - This is good to study the **reionization process** itself and test assumption on the sources, but says very little about the galaxies
 - Only way to access >> 100 Mpc scales so far (eg for **21-cm science**)

- Post-processing a large cosmological volume (hydro or DM-only)
 - This is good to study the reionization process itself and test assumption on the sources, but says very little about the galaxies.
 - Only way to access >> 100 Mpc scales so far (eg for **21-cm science**)
- RHD simulations of a large volume with low (> 1 kpc) resolution
 - Good to study the **gas response to reionization**, but requires calibrating the sources
 - Eg: CoDa, CROC, Technicolor, AURORA, THESAN

- Post-processing a large cosmological volume (hydro or DM-only)
 - This is good to study the reionization process itself and test assumption on the sources, but says very little about the galaxies.
 - Only way to access >> 100 Mpc scales so far (eg for 21-cm science)
- RHD simulations of a large volume with low (> 1 kpc) resolution
 - Good to study the **gas response to reionization**, but requires calibrating the sources
 - Eg: CoDa, CROC, Technicolor, AURORA, THESAN
- RHD simulations of small volumes with high resolution (< 50 pc)
 - Can access the emissivity of galaxies and **study the sources**, but harder to generalize (because size or environment)
 - Eg: SPHINX, Renaissance, Obelisk

- Post-processing a large cosmological volume (hydro or DM-only)
 - This is good to study the **reionization process** itself and test assumption on the sources, but says very little about the galaxies
 - Only way to access >> 100 Mpc scales so far (eg for **21-cm science**)
- RHD simulations of a large volume with low (> 1 kpc) resolution
 - Good to study the **gas response to reionization**, but requires calibrating the sources
 - Eg: CoDa, CROC, Technicolor, AURORA, THESAN
- RHD simulations of small volumes with high resolution (< 50 pc)
 - Can access the emissivity of galaxies and **study the sources**, but harder to generalize (because size or environment)
 - Eg: SPHINX, Renaissance, Obelisk

Introducing Obelisk: zooming on a proto-cluster environment

- Zoom on a **proto-cluster** region (V ~ 10⁴ cMpc³), currently at z~3.5
- RHD simulation with Variable Speed of Light Approximation
- High resolution
 - Δx = 35 pc
 - M_{DM} = 10⁶ M_☉
 - Snapshots every 15 Myr
- Stellar physics
 - Turbulent star formation
 - Mechanical SN feedback
 - BPASS model for radiation
- Black-hole physics
 - Eddington-limited Bondi accretion
 - Thermal + jet AGN feedback
 - Spin evolution of the BH
 - Radiation following the BH properties
- Traces source of radiation (stars or AGN)
- Twin simulation: hydro, but with tracer particles
- Subgrid model for dust (purely passive)

Introducing Obelisk: zooming on a proto-cluster environment

- Zoom on a **proto-cluster** region (V ~ 10⁴ cMpc³), currently at z~3.5
- RHD simulation with Variable Speed of Light Approximation
- High resolution
 - Δx = 35 pc
 - $M_{\rm DM} = 10^{6} M_{\odot}$
 - Snapshots every 15 Myr
- Stellar physics

.

- Turbulent star formation
- Mechanical SN feedback
- BPASS model for radiation
- Black-hole physics
 - Eddington-limited Bondi accretion
 - Thermal + jet AGN feedback
 - Spin evolution of the BH
 - Radiation following the BH properties
- Traces source of radiation (stars or AGN)
- Twin simulation: hydro, but with tracer particles
- Subgrid model for dust (purely passive)

Major challenge: modelling SMBH growth

Growing BH in low-mass galaxies

SN feedback prevents BH growth in low mass galaxies

Growing BH in low-mass galaxies

Growing BH in low-mass galaxies: feeding

SN feedback = low density

No supernovae = high density

SN feedback prevents BH growth in high-z dwarf galaxies

(Although see e.g. Koudmani+2022)

Growing BH in low-mass galaxies: dynamics

- Low-mass galaxies have a shallow potential well
- Recent simulations attempt to track the dynamics of SMBH, but this is a hard problem
- When done right, it seems that low-mass galaxies can have wandering SMBH...

Growing BH in low-mass galaxies: critical mass

- Above a critical mass, SMBH grow much more efficiently
- This mass is uncertain, but around log(Mstar) ~ 9.5 10.5

Super-Eddington growth? Probably not the universal solution

Super-Eddington accretion has been suggested to boost SMBH growth

Super-Eddington growth? Probably not the universal solution

Side issue: how obscured are these AGN?

- Simulation find a lot of obscured growth
 - \rightarrow growing BH requires gas
 - \rightarrow gas will obscure the AGN
 - \rightarrow LyC radiation will not escape
- Observations do find that high-z AGN are highly obscured... (e.g. Vito+2018, Vijarnwannaluk+2022, Peca+2023, Yang+2023)

What does this mean for the sources of reionisation?

Escape of ionising photons from a high-z dwarf galaxy

- AGN feedback in dwarf galaxies does not change how much radiation escapes
- It does not change the galactic ionising luminosity either
- However, the absence of SN feedback strongly decreases the escape fraction

Maxime Trebitsch - Escape of Lyman radiation from galactic labyrinths - April 21st, 2023

Faint AGN in a bright galaxy: ionising photons

Reionization history of the Obelisk volume

- Overall, the reionization history matches observational constraints
- The post-reionization neutral fraction is reasonably well recovered
- We should not expect a perfect match: *Obelisk* is a biased environment

In Obelisk, galaxies are responsible for reionisation

- The ionising emissivity is largely dominated by stellar populations at *z* > 4
- Overall, radiation escapes easily from bright AGN, but they are not numerous enough

Ionizing UV background in the Obelisk volume

- We get sensible values for the total
 HI photoionisation rate
- During the Reionisation era, stellar populations completely dominate the ionising UV background
- At z ≤ 5, AGN start to take over and ultimately dominate

Semi-analytical reionisation models

→ Delphi (Dayal+2014), Astraeus (Hutter+2020)

Semi-analytical reionisation models

- Semi-analytical models make it easy to explore the model space
- More idealised, but also more direct way to test trends
- All explored models lead to a subdominant contribution of AGN to reionization

Maxime Trebitsch - Escape of Lyman radiation from galactic labyrinths - April 21st, 2023

Trebitsch+2023

AGN vs galaxy luminosities in Astraeus

- AGN are dominating over their hosts ionizing luminosity in high-mass galaxies
- They dominate in the UV at M_{UV} brighter than -22 to -23

Empirical models

Direct simulations, semi-analytical models, and empirical approaches all seem to agree (See also results from Qin+2017, Eide+2020, Yung+2021, for example)

Summary

SMBH in low-mass galaxies have a hard time growing

- There seems to be a critical host mass for BH growth
- This is a combination of complex dynamics + feeding ... still room for improvement (BH seeding?)
- Most of the growth tends to be obscured anyway
 → Overall, expect low contribution from AGN

Galaxies dominate the EoR ionizing background

- Galaxies seems to provide enough photons to reionize the Universe by z ~ 6
- AGN most likely play a sub-dominant role
- Robust to very different modelling typese

https://obelisk-simulation.github.io/

Backup slides

Bright galaxy, faint AGN: observability

- Most of the time, the AGN dominates the X-ray emission
- However, the UV is often dominated by the host
- This means that converting the UV to LyC from the AGN can overestimate their contribution

Obelisk: Stellar to halo mass relation

Obelisk: AGN UV LF

Resolution matters

Horizon-AGN

Gas density

Cell size

Evolution of (most of) the high-resolution region

Assembly of a protocluster: enhanced star formation

- Obelisk is a proto-cluster: it contains a larger number of massive galaxies than the field
- Once dust is taken into account, the UV LF in Obelisk is comparable to observed overdensities

Assembly of a protocluster: enhanced star formation

- Obelisk is a proto-cluster: it contains a larger number of massive galaxies than the field
- Once dust is taken into account, the UV LF in Obelisk is comparable to observed overdensities