

Green Pea chemodynamics, feedback and the escape of Lyman radiation

RICARDO AMORÍN UNIVERSIDAD DE LA SERENA, CHILE

Escape of Lyman radiation from galactic labyrinths - Crete, 20 April 2023

Main Collaborators:

Matías Rodriguez, Vital Fernández, Dania Muñoz-Vergara, M. Llerena, V. Firpo, J. Vilchez, E. Perez-Montero, P. Papaderos, Jaskot, S. Flury, D. Schaerer, Rui Marques-Chaves, Y. Izotov, N. Guseva, S. Oey, L. Komarova, & LzLCS Team

GREEN PEAS: LOCAL ANALOGS OF REIONIZATION GALAXIES

Starbursting dwarf galaxies at 0.11<z<0.36 (a.k.a. Extreme emission-line galaxies) Selected by compactness and high emission-line EWs (Cardamone+09; Amorín+10,12,14,15; Jaskot & Oey 13; Henry+15; Yang+17,18)

- metallicity
- Physical mechanisms favoring the production and escape of ionizing photons

Under similar conditions to high-z galaxies!!

Amorín et al. 2012a, Fernández et al. 2021

GPs are rapidly forming between 4-30% of their total mass (~10⁹ M_{sol}) in an intense starburst

GREEN PEAS: LOCAL ANALOGS OF REIONIZATION GALAXIES

Starbursting dwarf galaxies at 0.11<z<0.36 (a.k.a. Extreme emission-line galaxies) Selected by compactness and high emission-line EWs (Cardamone+09; Amorín+10,12,14,15; Jaskot & Oey 13; Henry+15; Yang+17,18)

Best laboratories to study:

- Massive star formation and feedback at low metallicity
- Physical mechanisms favoring the production and escape of ionizing photons Under similar conditions to high-z galaxies!!

Most GPs at z~0.3-0.4 observed so far with HST/COS show strong Lya and LyC emission with Fesc ~ 5-75% Izotov+16,18,21; Verhamme+16; Schaerer+17

Ionizing photon escape: Simulations and models

Strong stellar feedback leading to winds/outflows from massive stars and SNe are responsible for clearing channels in the ISM from which ionizing photons can escape

> Wise & Cen 2009; Trebisch+17, Kimm+19, among others... Cosmological zoom-in simulations with FIRE @ z>5 Ma et al. (2020)

0.00 1.00 0.0 0.1 $\log \Sigma_{\rm gas} [M_{\odot} \, {\rm pc}^{-2}]$ Individual-star f_{esc} Stellar Age [Myr]

Simple models: Nakajima & Ouchi 13, Zackrisson+13; Jaskot & Oey 13, Ramambason+20

Galaxies are far more complex than single HII regions Picket fence models with holes, channels, filaments...

GPS HAVE COMPLEX GAS KINEMATICS

First evidence of stellar feedback and strong turbulence in the ionized gas

Amorín et al. (2012b)

High S/N, high-res (R~9000) WHT/ISIS spectra

Multiple narrow components possibly associated to resolved SF clumps $\Delta v \sim 50-500$ km/s and $\sigma_{int} = 40-120$ km/s

Turbulent ISM in thick/clumpy disks? Coalescence/accretion of SF clumps? Minor mergers?

Broad emission associated to high velocity gas σ_{int} =100-250 km/s FWZI ~ 650-1750 km/s $L_{Ha} \sim 10^{41}$ -10⁴² erg/s (up to 40% of the total Ha)

Signature of outflows: strong winds and SNe Fast shocks? Turbulent mixing layers?

GPS HAVE COMPLEX GAS KINEMATICS

Hogarth et al. (2020, incl.RA)

High S/N, high-res (R~9000) WHT/ISIS spectra

- Blue-shifted broad optical emission
 - $\sigma_{int} \sim 240 \text{ km/s}$
 - FWZI~1500 km/s
 - $\Delta v \sim -65 \text{ km/s}$

Consistent kinematics for all lines!

Broad/total~30-40% Narrow/total~25%

 $\Delta v_{(broad, mid)} \sim 60 \text{ km/s}$ $\sigma_{\rm N}$ =45 km/s, $\sigma_{\rm M}$ =120 km/s, $\sigma_{\rm B}$ =240 km/s

IMPACT ON EMISSION LINE DIAGNOSTICS

Broad emission show slightly lower excitation/ ionization

Hogarth+20

Broad is 2-3 times denser (~500 cm⁻³) and it has 20% lower T_e than narrower components

EVIDENCE OF OUTFLOWS IN GPs

UV and optical kinematics

Hogarth et al. (2020)

[Si II] $\lambda 1260$ $[\text{CII}] \ \lambda 1334$ [Si III] $\lambda 1206$ [Si II] $\lambda 1190$ [Si II] $\lambda 1193$ $H\alpha$ narrows $H\alpha$ broad $\Box v \alpha$ 1000

Comparison HST/COS high-res UV and ISIS optical spectra

- UV interstellar abs. lines trace lowerdensity gas

(Heckman & Borthakur+15, Chisholm+15)

- V_{max}~660 km/s
- Optical emission lines may trace denser gas

Assuming a simple model:

 V_{out} ~550 km/s η ~0.25-0.7 ; v_{out}/v_{esc} ~5.5 \rightarrow some gas could escape

A HST/COS SURVEY OF LYC EMITTERS AT Z~0.3

The Low-redshift Lyman Continuum Survey (LzLCS)

- Large HST/COS Program (160 orbits; PI: A. Jaskot)
- LyC observations for 66 diverse SFGs at z~0.2-0.4 with SDSS spectra + GALEX photometry.
- 35 newly confirmed LCEs, several have Fesc>5% !!
- Consistent reanalysis of 12 previous detections (Izotov+21)

Sample selection Flury et al. 2022a

The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters

Sophia R. Flury¹⁽⁰⁾, Anne E. Jaskot²⁽⁰⁾, Harry C. Ferguson³⁽⁰⁾, Gábor Worseck⁴⁽⁰⁾, Kirill Makan⁴⁽⁰⁾, John Chisholm⁵⁽⁰⁾, Alberto Saldana-Lopez⁶⁽⁰⁾, Daniel Schaerer⁶⁽⁰⁾, Stephan McCandliss⁷⁽⁰⁾, Bingjie Wang⁷⁽⁰⁾, N. M. Ford²⁽⁰⁾, Timothy Heckman⁷⁽⁰⁾, Zhiyuan Ji¹⁽⁰⁾, Mauro Giavalisco¹⁽⁰⁾, Ricardo Amorin⁸⁽⁰⁾, Hakim Atek⁹, Jeremy Blaizot¹⁰, Sanchayeeta Borthakur¹¹⁽⁰⁾, Cody Carr¹²⁽⁰⁾, Marco Castellano¹³⁽⁰⁾, Stefano Cristiani¹⁴⁽⁰⁾, Stephane De Barros⁶⁽⁰⁾, Mark Dickinson¹⁵⁽⁰⁾, Steven L. Finkelstein⁵⁽⁰⁾, Brian Fleming¹⁶⁽⁰⁾, Fabio Fontanot¹⁴⁽⁰⁾, Thibault Garel⁶, Andrea Grazian¹⁷, Matthew Hayes¹⁸⁽⁰⁾, Alaina Henry³⁽⁰⁾, Valentin Mauerhofer⁶, Genoveva Micheva¹⁹⁽⁰⁾, M. S. Oey²⁰⁽⁰⁾, Goran Ostlin¹⁸⁽⁰⁾, Casey Papovich²¹⁽⁰⁾ Laura Pentericci¹³⁽⁰⁾, Swara Ravindranath³, Joakim Rosdahl¹⁰, Michael Rutkowski²²⁽⁰⁾, Paola Santini¹³⁽⁰⁾, Claudia Scarlata¹²⁽⁰⁾, Harry Teplitz²³, Trinh Thuan²⁴, Maxime Trebitsch²⁵, Eros Vanzella²⁶, Anne Verhamme^{6,10}, and Xinfeng Xu⁷

	100H1H3-523640	(CC1109+3000231		DULINDO- DA MID	иттол+ныки	RESUS-HT2807	PRESEDUCION	FRE-459+315459	FROMUS+18000
		KARLES - THELENS	101 200-540 ACO	Service 115211	JM 2552 + 395714	ASSESSMENT	E94602+900344	1005216+486348	Fostar 1910
180403-NUISI	ILING-KUINN	JANDHI + KINZIF	11828-01738	*	MESSIL+SUPPS		ПТИЛОНИТЕКИ	IIIZII#+#LBOX	ILINA 1940
(1100 M 1040	120014-307.004	521415+10 MM	ET MYTHERMON	234013+712718	TO ALCONOMIN		10 M M + 12 M
•	Large-South	BACCON- DIADY	Linux-some	Exer-Las	BURNT-SUPERT		ELLING+GLENER		
	*		1	×					
130008-583438	1146503-652135	5 [141003+434405	11.44000-461937	101707+010512	JIS4850+572442			[154507+313054	D54849+40575

LzLCS sample imaged by HST/COS

WHAT PROPERTIES FAVOR LYMAN PHOTON ESCAPE?

Goals of LzLCS

Probe key LyC indicators which are testable with JWST at z>6

- Diverse sample help to discriminate different diagnostics, provide statistics and study scaling relations+scatter
- Combine with state-of-the-art models and simulations

The Low-redshift Lyman Continuum Survey. II. New Insights into LyC Diagnostics

Sophia R. Flury¹, Anne E. Jaskot², Harry C. Ferguson³, Gábor Worseck⁴, Kirill Makan⁴, John Chisholm⁵, Alberto Saldana-Lopez⁶, Daniel Schaerer⁶, Stephan R. McCandliss⁷, Xinfeng Xu⁸, Bingjie Wang⁸, M. S. Oey⁹, N. M. Ford²⁽¹⁾, Timothy Heckman⁸⁽¹⁾, Zhiyuan Ji¹⁽¹⁾, Mauro Giavalisco¹⁽¹⁾, Ricardo Amorín^{10,11}⁽¹⁾, Hakim Atek¹² Jeremy Blaizot¹³, Sanchayeeta Borthakur¹⁴, Cody Carr¹⁵, Marco Castellano¹⁶, Stephane De Barros⁶, Mark Dickinson¹⁷ Steven L. Finkelstein⁵, Brian Fleming¹⁸, Fabio Fontanot¹⁹, Thibault Garel⁶, Andrea Grazian²⁰, Matthew Hayes²¹, Alaina Henry³, Valentin Mauerhofer^{6,22}, Genoveva Micheva²³, Goran Ostlin²¹, Casey Papovich²⁴, Laura Pentericci¹⁶, Swara Ravindranath³, Joakim Rosdahl¹³, Michael Rutkowski²⁵, Paola Santini¹⁶, Claudia Scarlata¹⁵, Harry Teplitz²⁶, Trinh Thuan²⁷, Maxime Trebitsch²⁸, Eros Vanzella²⁹, and Anne Verhamme^{6,22}

	askot'	s review							
see Anne	Wa	ng+21		Izo	tov+18		Salda	ña-López-	⊦22
Diagnostic		$F_{\lambda LyC}/F_{\lambda 1100}$			$f^{LyC}_{esc}({ m H}eta)$			$f_{esc}^{LyC}(\mathrm{UV})$	
	au	p	σ	au	p	σ	au	p	σ
$E Ly \alpha \\ esc$	0.292	$5.186 imes10^{-5}$	3.882	0.343	1.942×10^{-6}	4.618	0.324	6.774×10^{-6}	4.351
$EW(Ly\alpha)$	0.320	8.687×10^{-6}	4.296	0.234	1.141×10^{-3}	3.051	0.342	2.011×10^{-6}	4.610
lsep	-0.493	3.103×10^{-4}	3.422	-0.422	2.033×10^{-3}	2.873	-0.530	1.055×10^{-4}	3.705
$\log_{10} O_{31}$	-0.149	0.039	1.761	-0.144	0.045	1.693	-0.151	0.036	1.796
$ m og_{10}[O~I]/Heta$	-0.148	0.041	1.745	-0.145	0.044	1.709	-0.145	0.044	1.705
$O_{10} O_{32}$	0.290	$5.678 imes 10^{-5}$	3.860	0.198	$6.024 imes 10^{-3}$	2.511	0.347	1.438×10^{-6}	4.679
$EW(H\beta)$	0.223	1.953×10^{-3}	2.886	0.109	0.132	1.117	0.283	8.366×10^{-5}	3.764
$A_{1500,obs}$	0.045	0.533	0.000	-0.013	0.857	0.000	0.098	0.174	0.940
$A_{1500,int}$	0.228	1.591×10^{-3}	2.950	0.157	0.029	1.895	0.320	$8.978 imes10^{-6}$	4.289
B ₁₂₀₀	-0.221	2.200×10^{-3}	2.848	-0.261	2.966×10^{-4}	3.435	-0.283	8.366×10^{-5}	3.764
$\log_{10} M \star$	-0.089	0.216	0.785	-0.074	0.307	0.503	-0.167	0.021	2.040
$\cos nuv r_{50}$	-0.388	7.179×10^{-8}	5.261	-0.301	2.938×10^{-5}	4.018	-0.382	1.193×10^{-7}	5.166
$\log_{10} \Sigma_{ m SFR,Heta}$	0.368	3.884×10^{-7}	4.941	0.264	2.650×10^{-4}	3.465	0.325	7.099×10^{-6}	4.341
$\log_{10} \Sigma_{\mathrm{SFR,F}_{\lambda1100}}$	0.070	0.334	0.429	0.068	0.347	0.394	-0.035	0.632	0.000
$\log_{10} \mathrm{sSFR}$	0.110	0.128	1.138	0.043	0.554	0.000	0.181	0.012	2.254
$\log_{10} \Sigma_{\mathrm{sSFR},\mathrm{H}eta}$	0.290	6.320×10^{-5}	3.833	0.208	4.167×10^{-3}	2.638	0.346	1.859×10^{-6}	4.627
$2 + \log_{10} \left(\frac{O}{H} \right)$	-0.187	9.484×10^{-3}	2.346	-0.130	0.070	1.475	-0.211	3.420×10^{-3}	2.705

Linking ionized gas kinematics with Lyman photon escape Main guestions

- Can we use emission line kinematics to constrain models/simulations?
- What can we learn from the emission-line kinematics of LyC emitters? Is ionized gas kinematics causally connected to Lya and LyC escape?
- Could ionized gas kinematics be an additional indirect diagnostic for LyC emission?

Linking ionized gas kinematics with Lyman photon escape Our main goals

- Ionized gas kinematics characterization from emission line profiles
 - High-resolution deep optical spectra (long-slit and IFU)
 - Representative sample of LyC emitters and non-emitters at low-z
- Detection of high-velocity gas flows and characterize their properties (energetics, density, temperature, ionization and other diagnostics..)

Sample and data

• Sample: Subsample of 17 GPs from LzLCS (Flury+22) + 5 GPs from Izotov+16, 18. In total: 4 non-LCEs; 11 weak and 7 strong LCEs

• Data: Long-slit spectra from VLT/XShooter (R~8800) and WHT/ISIS (R~9000) ~1-3h on-source (allows continuum) detection)

• Methodology: Multi-component Gaussian fitting inspired in our previous work (Amorín+12, Bosch+19; Hogarth+20)

Methods

LiMe: A Line Measuring library for the chemical and kinematic analysis of the ionized gas .

Extremely complex line profiles require very demanding voxel-by-voxel modeling

We use a new versatile code LiMe; developed by Vital Fernández. (Fernández et al. 2023)

LiMe measurements

Integrated			
Line fluxes Peak flux Peak wavelength Line redshift FWHM	Continuum level Continuum gradient Continuum intercept Continuum noise Velocity percentiles	Eqw Profile center Profile sigma FWHM	Line Fluxes Radial velocity Velocity dispe
Transition ion Transition label later mask (rest frame)	Transition wavelength blended/merged grou	p S/N line S/N continuum χ^2 χ^2_{ν}	AIC BIC observations (e comments (use
0			
• The measurements	physical/mathematical de	escription can be found in th	e online documenta
nethod Dire npling t al (2019)	ect method + photoioni space sampling Fernández et al (20	zation grids Chem sp 21)	ical + kinematics ace sampling

Non-parametric analysis

A few examples of observed [OIII]5007 profiles from strong LCEs

- Inter-percentile range measurements (e.g. Veilleux+20)
 - **Outflow kinematics** $w_{80} = v_{90} - v_{10} \quad v_{max} = \Delta v + 2\sigma_{broad}$
 - Asymmetry and shape parameter (Liu+13) emission

$$A \equiv \frac{(v_{90} - v_{\text{med}}) - (v_{\text{med}} - v_{10})}{W_{80}} K \equiv \frac{W_{90}}{1.397 \times \text{FWHN}}$$

Rodríguez et al. (in prep)

Evidence of ionized gas outflows in LyC leakers

Matías Rodríguez MSc thesis (2022)

Dania Muñoz PhD thesis (in prep)

Full kinematic modelling of bright and faint lines

First clear evidence for broad emission heavy line wings in strong LCEs, which contribute ~20-50% of the total line flux

IMPORTANT: Bright Balmer AND CELs show similar kinematics! No AGN behavior (see Hogarth+20)

(b) **J0925+1403** $f_{esc}(LyC) \sim 7\%$

Rodríguez et al, in prep

Evidence of ionized gas outflows in LyC leakers Izotov+16 sample

- All emission components are photoionized by massive stars but broad emission show larger [NII]/Ha
- Broad emission in SLCEs is highly excited and fainter in [SII]/Ha and [OI]/Ha, as expected from densitybounded regime (cf. Wang et al., 2021; Ramambason et al., 2020)

Broad/total up to ~40%

Evidence of ionized gas outflows in LyC leakers LzLCS Flury+22 subsample 10° $(081409, f_{esc} < 0)$ $r_{50} = 1.4 \text{ kp}$

- All emission components are photoionized by massive stars but broad emission show larger [NII]/Ha
- Broad emission in WLCEs and NLCEs appear larger in [SII]/Ha and [OI]/Ha, in contrast to SLCEs which also show higher excitation

Evidence of ionized gas outflows in LyC leakers LzLCS Flury+22 subsample $1081409, f_{exc} < 0$

Weak LCEs show lighter broad wings and narrower/less asymmetric profiles

- Broad emission tend to be blue-shifted in strong leakers: Classic signpost of unresolved outflows
- Most LCEs appear in nearly face-on configuration in UV images
- Intriguing: the few non-LCEs show more clumpy/distorted UV morphologies but emission lines are more symmetric and less extended
- Conversely, stronger leakers are more compact and small in size but they show more distorted and broader profiles apparently coming from unresolved regions (i.e. <250 pc)

What is the nature of the line components?

Traces **virial motions** through the gravitational potential of a star-forming galaxy or giants star-forming regions

- I. AGNs
- II. Stellar feedback (winds + radiation)
- III. Expansion of SNe remnants
- IV. SNe-driven superbubble blow-up
- V. Turbulent mixing layers

(See Amorín+12b, Hogarth+20)

What is the nature of the line components?

L-sigma relation (Terlevich & Melnick 1981)

Traces **virial motions** through the gravitational potential of a star-forming galaxy or giants star-forming regions

- Narrow components follow the relation for local HII regions/galaxies and high-z HII galaxies (Terlevich+15).
 No additional input needed to describe virial motions.
- Broad components show velocity dispersion higher than those expected for its luminosity. Additional broadening mechanism is required to contribute to the gas turbulence
 - I. AGNs
 - II. Stellar feedback (winds + radiation)
 - III. Expansion of SNe remnants
 - IV. SNe-driven superbubble blow-up
 - V. Turbulent mixing layers

(See Amorín+12b, Hogarth+20)

Does broad emission scale with LyC detection?

	$\sigma_{int,H}$	$\alpha - Broad$	$\sigma_{int,[{\rm OIII}]-{ m Bro}}$		
	au	p	au	-	
significance	$0.605\substack{+0.083\\-0.077}$	1.907×10^{-4}	$0.437\substack{+0.121 \\ -0.108}$	7.084	

The significance of LyC detection appears strongly correlated with the extent of of emission line wings

Strong LCEs: significance of LyC detection > 5σ and f_{esc} > 5%

Weak LCEs: significance of LyC detection ~ $2\sigma - 5\sigma$ and f_{esc} < 5%

Non-emitter: significance of LyC detection $< 2\sigma$

SIGNIFICANT

CORRELATION!

Escape fraction vs. outflow velocity traced by broad emission

- Stronger LCEs show broader wings -> larger f_{esc}
- Large scatter as in other indirect diagnostics (cf. Flury+22b)

Kendall-tau analysis indicates significant correlation between intrinsic velocity dispersion of the broader component and f_{esc}

	$F_{\lambda Ly C}$	$_{C}/F_{1100}$	f^{LyC}_{esc}	$G(H\beta)$
	au	p	au	p
$\sigma_{int,Hlpha- ext{Broad}}$	$0.458\substack{+0.121\\-0.121}$	4.763×10^{-3}	$0.426\substack{+0.121\\-0.127}$	$8.589 \times$
$\sigma_{int,[{\rm OIII}]-{\rm Broad}}$	$0.363\substack{+0.093\\-0.098}$	2.518×10^{-2}	$0.247\substack{+0.128\\-0.136}$	$1.273 \times$

Halpha

Broad emission vs other indirect tracers Physical properties

- Mild correlation with size, R₅₀(UV)
- Mild correlation with SFR/Area
- No significant correlation with stellar mass
- No significant correlation with O32

	$\sigma_{int,H}$	$H\alpha - Broad$	$\sigma_{int,[}$	$\sigma_{int, {\rm [OIII]}-{ m Broad}}$		
	au	p	au	p		
$\log_{10}O_{32}$	$0.095\substack{+0.130 \\ -0.153}$	5.592×10^{-1}	$0.084^{+0.130}_{-0.147}$	6.037×10^{-1}		
$\log_{10} M_*$	$-0.011^{+0.154}_{-0.154}$	9.483×10^{-1}	$0.189^{+0.168}_{-0.145}$	2.428×10^{-1}		
	$\sigma_{int,i}$	$H\alpha-Broad$	$\sigma_{int,[C]}$	DIII]-Broad		
	$ au_{int,1}$	$^{ m Hlpha-Broad} p$	$\sigma_{int,[C]}$	$p_{\rm IIII}$ -Broad p		
$\overline{\text{COS NUV } r_{50}}$	$\frac{\sigma_{int,1}}{\tau} \\ -0.289^{+0.123}_{-0.123}$	p $7.435 imes 10^{-2}$	$\frac{\sigma_{int,[C]}}{\tau} -0.279^{+0.129}_{-0.121}$	$\frac{p}{8.551 \times 10^{-2}}$		
$\frac{\text{COS NUV } r_{50}}{\log_{10} \text{SFR}_{H\beta}}$	$\tau \\ -0.289^{+0.123}_{-0.123} \\ 0.211^{+0.112}_{-0.109}$	$\frac{p}{7.435 \times 10^{-2}}$ 1.944×10^{-1}	$\sigma_{int,[C]}$ τ $-0.279^{+0.129}_{-0.121}$ $0.158^{+0.104}_{-0.114}$	$\begin{array}{c} p \\ \hline p \\ \hline 8.551 \times 10^{-2} \\ \hline 3.304 \times 10^{-1} \end{array}$		

Broad emission vs other indirect tracers Lya properties

	$\sigma_{int,H}$	$\alpha - Broad$	$\sigma_{int, {\rm [OIII]}-{\rm Broad}}$		
	au	p	au	p	
$f_{esc}^{Ly\alpha}$	$0.263^{+0.129}_{-0.121}$	1.048×10^{-1}	$0.189^{+0.160}_{-0.143}$	2.428×10^{-1}	
$EW(Ly\alpha)$	$0.200_{-0.141}^{+0.123}$	2.176×10^{-1}	$0.274_{-0.114}^{+0.098}$	9.158×10^{-2}	
v_{sep}	$-0.167\substack{+0.167\\-0.163}$	4.507×10^{-1}	$-0.136\substack{+0.143\\-0.143}$	5.371×10^{-1}	

- Weak trend with Lya Fesc and EW
- Stronger LCEs with broader components show shorter Lya peak separation (need more high-res Lya)

Ongoing work Nebular properties Lya shapes

Spatially resolved $H\alpha$ Kinematics of green peas

Bosch et al. (2019)

Multiple kinematic components

Requires high-quality data

```
R831 (R=5100 at \lambda~7250)
λ<sub>obs</sub>=6500-8200Å
\sigma_{inst} = 25 \text{ km/s}
0.2" pixel size \sim 500 pc
High S/N Texp~3h
Excellent weather IQ20 (aver.
seeing \sim 0.5'')
```


Spatially resolved $H\alpha$ Kinematics of green peas

Bosch et al. (2019)

Multiple kinematic components

Requires high-quality data

R831 (R=5100 at λ ~7250) $\lambda_{obs} = 6500 - 8200 \text{\AA}$ $\sigma_{inst} = 25 \text{ km/s}$ 0.2" pixel size \sim 500pc High S/N Texp~3h Excellent weather IQ20 (aver. seeing $\sim 0.5''$)

Velocity dispersion

Velocity

JWST/NIRSpec IFU will provide similar data for compact EELGs at high-z

150 100 -50 -100-150 240

160

BROAD EMISSION IN REIONIZATION ANALOGS AT Z~1-3

Complex line profiles and broad emission in bright z~3 LAEs in deep X-shooter and **MOSFIRE** spectra

Llerena, RA+ (2023, <u>arXiv:2303.01536</u>)

 $\Delta v [km s^{-}]$

200

0

 Δv [km s⁻¹]

400

Blue and red-shifted wings and multiple components in bright LAEs (B/Tot~20-50%) Similar analysis is now possible with JWST

Matthee+2021

FUTURE AVENUES OF EXPLORATION

Broad emission in high-z galaxies and confirmed LCEs at z~3

Now possible for strongly magnified systems and with JWST/NIRSpec

Mainali et al. 2022 (LCO/FIRE stacked spectra) Sunburst Arc

Conclusions...

- multicomponent or non-parametric analysis required
 - leakers
 - Clear evidence of ubiquitous broad emission in LCEs. SF-driven feedback Outflow
 - compact SF clump. Blue-shifted broad emission seem to prefer nearly face-on configuration
 - Strong LCEs show more extended and heavy (B/Tot) wings (larger V_{out}) than non-leaking SFGs. Evidence of a correlation between $\sigma_{int}(\propto v_{out})$ with f_{esc}
 - We propose this as a new, complementary indirect diagnostic for LCE at higher redshift
 - kinematics and Lyman escape at z>1

• Green pea galaxies have very complex ionized gas kinematics. Single gaussian fitting is insufficient so far,

• Narrow (σ_{int} ~25-100km/s) + Broad (σ_{int} >100-250 km/s). Broad/Total can be as large as ~40% in strong

Ionized outflow (broad emission) in LCEs traces higher density gas likely coming from the youngest

Line ratios consistent with highly photoionized gas, no need of more extreme sources (e.g.AGN)

Deep high-dispersion spectra with JWST could be a powerful tool for exploring the connection between

And more questions for discussion...

- Is the broad emission mostly driven by radiative feedback or SNe? Both?
- What is the localized origin of the broad emission in LCE and non-LCEs? Line-of-sight/ geometric effects?
- Is the broad emission a galactic outflow in NLCEs and a more localized effect in SLCEs?
 - What are the associated resolved properties of the broad emission? (ionization, extinction, metallicity...) Requires deep high-res IFU data
 - What is the localized origin of the broad emission in LCE and non-LCEs? Is it the same place from where the LyC photons come from? -> Sunburst LCE say yes
- Can we connect the ionized gas kinematics with the Lya shapes we observe in LCEs? O

THANK YOU !!

Sunset in La Serena

34

