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The Smoking Guns of Cosmic Reionization: Galaxies and (weak) AGN

• Bronze “Falcon” gun in Heraklion’s

Historical Museum ...

• Venetian fortress Spinalonga in Elounda,

Crete ...

• LyC is very hard to measure directly, so I reserve the right to speculate!

• My theory will be simple: big Galactic fortresses with small holes!



Outline

(1) The Power of Space- and Ground-based LyC Spectroscopy

(2) Lyman Continuum Constraints from HST WFC3/UVIS

(3) The Promise and Power of JWST for LyC Constraints at High Redshift

(4) Summary and Conclusions:
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(4) Summary and Conclusions:

• (Faint) Galaxies: Smaller ISM holes, somewhat lower fesc.

• (Weak) AGN: Bigger ISM holes, higher fesc & dominate at z∼2–3.

Sponsored by NASA/HST & JWST

Talk is on: http://www.asu.edu/clas/hst/www/jwst/jwsttalks/crete23_jwstlyc.pdf

You all gave very inspiring talks this week! Apologies that I can’t refer to them all individually!

http://www.asu.edu/clas/hst/www/jwst/jwsttalks/crete23_jwstlyc.pdf


(1) The Power of Space- and Ground-based LyC Spectroscopy

Low-z LyC: FUSE fesc≃1.4–2.4% z>∼0.02 (Leitet+13; Left) — COS fesc≃21% z=0.235 (Borthakur+14; Right)

LyC samples: COS fesc≃5–50% at z≃0.2–0.4 (Flury+22) — Keck fesc≃6–9% at z≃3.05 (Steidel+18)

• Advantage: Spectral accuracy at λ<
∼912 Å; Disadvantage: Contamination uncertain and limited z-range.



(2) HST WFC3/UVIS Constraints of LyC at z∼2.2–3.5.

[Left] WFC3 designed to maximize throughput and minimize red-leak:

• Red-leaks <
∼3×10−5 of peak transmission, or <

∼0.6% of LyC signals.

[Right] Composite rest-frame far-UV spectra of: SDSS QSOs at z≃1.3;
LBGs at z≃2–4: Lyα emitters, & absorbers; & LBGs at z≃3.

• WFC3/UVIS F225W, F275W, F336W filters sample LyC (λ<912Å) at
z≥2.26, z≥2.47, and z≥3.08 (best at low-end of each z-range).

• Lower z-bounds: no λ> 912 Å below filter’s red-edge (≡0.5% of peak).



(2) Hubble WFC3 — Selection of Spectroscopic Samples
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Apparent and absolute magnitude distributions (restframe 1550Å) of the
“Gold” (>99% reliable zspec) galaxy & weak AGN (em. line) samples.

(Smith et al. 2018, ApJ, 853, 191; Smith et al. 2020, ApJ, 897, 41):

• Blue dotted: faint-end slope of gal counts & LF (Windhorst+ 2011, ApJ, 193, 27).

• Sample incompleteness for AB>
∼24.5-25, or MAB (1650)>∼–20.5 mag.

• LyC AB-fluxes & fesc-values only valid for these selected luminosities.

• Galaxies with weak AGN have same N(MAB) as galaxies without AGN.
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WFC3/ERS & HDUV AGN+Galaxy LyC stacking (Smith et al. 2018, ApJ, 853, 191; — 2020, ApJ, 897, 41).

• Rare (weak) AGN with robust spectroscopic redshifts at z≃2.3–3.5 dom-
inate reionizing LyC flux in stacked WFC3/UVIS images (AB<

∼29 mag).

• Need ≃0′′.04 WFC3 UV-PSF to remove all foreground interlopers at >> 99% confidence!



• CIGALE+XSpec SED fit to brightest LyC AGN at z=2.59 with Chandra
spectrum (Smith, B. et al. 2020, ApJ, 897, 41):

• Accurate LyC escape fraction from HST & GALEX: fesc≃28–30%.
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• UVCANDELS AGN LyC detections AB≃23.4–28.5 mag: fesc≃30±25%.

• 12/58 detections (21%): <LyC opening angle> <
∼40◦ (Smith, B. et al. 2023).



• UVCANDELS galaxy LyC detections AB≃25.5-26.6 mag, LyC stacks
∼29.1–29.7 mag; resulting fesc∼6–10%. [1-cos(θh)≡detected fraction]:

• 5/96 detections (5%): <LyC opening angle> <
∼20◦ (Wang, Teplitz+ 23, ApJ, subm.)
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[Left]: WFC3 LyC stack of Gals, weak AGN and All, +non-ionizing UVC.

[Middle]: Radial SB-profiles of stacked UVC [Top]; LyC stack [Bottom]:

• LyC SB-profiles extended compared to PSFs, but very non-Sersic like!

Dashed: scattering model with ISM porosity+escaping LyC (Smith, B.+ 2018).

[Right]: Patchy ISM model of escaping LyC (& Lya) (Borthakur+14).

• WFC3 Galaxy and AGN <LyC opening angle> <
∼20–40◦, respectively.

• Weak AGN more/bigger holes than Gals; LyC not always from accretion disk



• AGN LyC stacking candidates with CIGALE+XSpec SED fits

(ALCATRAZ: Smith, B.+ 2020, ApJ, 897, 41; UVCANDELS: Smith, B., Wang, X., Teplitz, H.+ 2023).



• Galaxy LyC stacking candidates with CIGALE SED fits

(ALCATRAZ: Smith, B., et al. 2020, ApJ, 897, 41; UVCANDELS: Wang, X., et al. 2023).



ERS & HDUV AGN+Galaxy CIGALE SED fits (Smith et al. 2020, ApJ, 897, 41).

• LyC SED parameters AV , Mass, Age, SFR follow 3DHST: SMC extinction sometimes better fit.



(2) LyC Escape Fractions vs. z for Faint Galaxies & Weak AGN
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[Left] PDF of absolute fesc-values (Inoue+ 2014), folding LyC fluxes +
errors through 109 random LOS of IGM transmission (Smith+ 20, ApJ, 897, 41).

• Circles: average fesc; triangles: fesc-mode with ±1σ MC-range.

• [Right] Statistical samples: AGN & Galaxies fesc high enough (5–30%)
to maintain reionization at z≃2.3–3.5. Rare weak AGN dominate LyC.

• fesc errors dominated by low S/N, IGM-transmission & sample variance.



Deep HST imaging of weak AGN outflow at z=2.390
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(Left): WFPC2 BVI + F410M (Lyα ) on radio galaxy 53W002 + sur-
rounding group of 17 z=2.39 Lyα candidates (Pascarelle+ 1996, Nature, 383, 45).

(Right): Radio galaxy 53W002 at z=2.390 (Windhorst et al. 1998, ApJL, 494, 27):

stellar r1/4-law + Lyα & blue continuum AGN-cloud.

• Lyα may escape through outflow hole from radio jet (θh∼20◦); LyC?



(3) The Promise and Power of JWST for LyC Constraints at High Redshift

What LyC constraints can JWST provide at z>∼4 where the IGM is opaque?

• HST has had 180,500 sunrises + sunsets since its April 1990 launch;

• JWST has had only 1 sunrise + 1 sunset since its Dec. 2021 launch!

• JWST: a >
∼10-year stable platform for very faint imaging & spectroscopy.



One of the most massive (1010.9 M⊙) high-z radio galaxies at z=4.11:

• TNJ1338: NIRCam medium-band SFR∼1800 M⊙/yr; extreme jet-induced SFR>
∼500 M⊙/yr, tSFR≃4 Myr.

Opening angles: HST Lyα θh
<
∼50

◦; NIRCam+VLA jet θh∼10◦ (Duncan+ 2023, MNRAS, astro-ph/2212.09769)



NIRSpec: CEERS-16943 now spectroscopically confirmed at z=11.44!

CEERS-93316 at z=4.912 (overdensity), not z∼16 (zphot line-contaminated)!

(Haro et al. astro-ph/2303.15431; see also Naidu et al. astro-ph/2208.02794)



NIRSpec redshifts for four NIRCam zphot≃10–13 candidates:

• zphot≃10–13 candidates indeed at NIRSpec zspec=10.38–13.20.

• SED-model fesc∼20–70% (Robertson et al. 2023; astro-ph/2212.04480)



4 NIRCam-selected galaxies in GOODS-S with NIRSpec 10.3<∼zspec
<
∼13.2.

• Generally metal poor with masses∼107–108 M⊙ and blue β-slopes.

• Significant Lyα -damping wings — good (future!) re-ionizers.

(Curtis-Lake, E. et al. 2023, astro-ph/2212.04568)

• These are not reionizers yet at z>∼10, but they will be by z≃7–8!



JWST NIRSpec spectrum of GN-z11; z=10.603 instead of z=11.09!

• UV β-slope≃–2.4; H, C, N, O, Mg em-lines/outflows: not AGN, but SFR≃20–40 M⊙/yr.

(Bunker et al. astro-ph/2302.097256v1). See my next musings on N-lines and Wolf Rayet stars.



Galaxy Outflows with HST and JWST: Let’s talk Wolf-Rayet stars:

30 M⊙ Wolf Rayet star WR124 shortly before it turns Supernova ...

• [Left] NIRCam and [Right] MIRI — both showing recent mass loss.

• Prelude stage to Supernova also releases ∼10 M⊙ of (dusty) mass!

• “Cavities” at PA∼75 & 255±15◦ suggests rapid stellar rotation!

• Future Supernova may poke θh∼15◦ holes in ISM −→ use in fesc-models!



(Roberts-Borsani, G. et al. 2023, Nature, in press;

astro-ph/astro-ph/2210.15639)

Highly magnified dwarf galaxy behind A2744 is at NIRSpec zspec=9.793!

• MUV ≃–17.35 mag, re=150 pc, lowest known dwarf galaxy mass=107.19 M⊙ at z≃10!

• Presence of Hβ , Hγ , Hδ , N-III but no C, O suggests pristine object with WR stars of >
∼30 M⊙.



Pop III star HR-diagram: MESA stellar evolution models for Z=0.0 Z⊙.
(Windhorst, Timmes, Wyithe et al. 2018, ApJS, 234, 41).

• WR stars come from M>
∼20-30 M⊙ stars, which live ∼6–8 Myrs.

• SN-driven outflows come from M>
∼8 M⊙ stars, which live <

∼30 Myrs.

• A 100 Myr starburst at z∼10 will have SN-driven outflows for another
∼140 Myrs, i.e., till z∼8 maximizing ISM holes for LyC-escape by then.



Highly magnified galaxy behind MACS0308 at ALMA redshift zspec=6.2078:

• Asymmetric ALMA [CII]-line suggests C-outflow at v≃–230 km/s.

• Lack of detected 158µm dust continuum: SF in dust-free environment.

fesc SED-modeling needed at z=6! (Fudamoto, Y. et al.; astro-ph/astro-ph/2303.07513)



Highly magnified galaxy behind MACS0416 at ALMA redshift zspec=8.312:

• Superbubbles produce Galaxy-scale outflows + bulk-motion of ionized gas.

fesc SED-modeling needed at z=8! (Tamura et al. 2023, astro-ph/2303.11539)



Welch, B., et al. 2022, ApJ, 940, L1 (astro-ph/

2208.09007);

Welch, B., et al. 2023, ApJ, 943, 2 (astro-ph/

2207.03532);

Vanzella, E., et al. 2023, ApJ, in press (astro-

ph/ 2211.09839).

Highly magnified star (µ∼9000) Earendel, behind cluster WHL0137, at zphot=6.2±0.1:

• Best SED-fit: low Z/Z⊙ double star, Teff =9000+34,000 K, and L∼105.3 + 105.9L⊙ .

• JWST has the potential to study individual (binary) stars that contribute to reionization!



(4) Summary and Conclusions

(1) Space- and ground-based LyC spectroscopy has a unique role in LyC:

• Spectral accuracy at λ<
∼912 Å; Contamination more uncertain and more limited z-range.

(2) WFC3 can measure LyC for galaxies + weak AGN at z≃2.3–3.5:

• WFC3 filters designed with low-enough redleak to enable this.

• Deepest 10-band HST images mask all foreground interlopers to AB<
∼28.

• Weak AGN ∼3× brighter in LyC, but ∼2× less numerous than Gals.

• LyC SB-profiles much flatter than UVC, and very non-Sersic like.

• LyC escapes along few sight-lines offset from galaxy center: Outflows?
Does ISM-porosity increase with galaxy radius?

• fesc just large enough (AGN∼30±25%; Gals: 5–10%) for reionization.

(3) JWST provides many smoking guns for reionization at z≃4–13:

• Many cases of (AGN, Gal) outflows, with <opening angles> θh
<
∼20–40◦.

• Expect many NIRSpec analyses of potential LyC emitters at z≃4–13.



SPARE CHARTS



.

North Ecliptic Pole (NEP) Time Domain Field (TDF) from PEARLS project:

(PEARLS = Prime Extragalactic Areas for Reionization and Lensing Science; Windhorst et al. 2023, Astron. J., 165, 13; astro-ph/2209.04119)

• The NEP TDF is unique: Webb can observe it 365 days per year!

• Some remarkable results in PEARLS and other recent JWST projects:

• Seyferts and spirals with weak AGN seen abundantly in the images.

• (Old SED) tidal tails everywhere. Abundance of red (dusty) spirals.



(2b) Hubble WFC3 ERS — Spectroscopic Sample Selection

Comparison of redshift reliability (spectrum quality) assessments, from best
(0.0) to poorest (2.0), by five co-authors [BS, RAW, SHC, RAJ, and LJ]:

• Measuring LyC escape fractions of fesc≃6.0% at >
∼3σ requires very low

interloper fraction (Siana+ 2015; Vanzella+ 2015).

• Mask-out all interlopers from 10-band ERS mosaics to AB<
∼28 mag.

• Use all VLT, Keck, & HST grism spectra to get most reliable samples:

• “Gold” sample: highest fidelity (grades=0–0.63): zsp’s very likely correct.



What critical aspects does JWST add to HST’s LyC Escape studies?

JWST FGS+NIRCam: R≃150, 0.8–5.0µm grism spectra to AB<
∼28–29:

• Larger, fainter SED+zspec-samples of LyC candidates in HST UV fields.

NIRSpec: JWST’s short-wavelength (λ≃1–5.0µm) spectrograph:

• 100’s of simultaneous faint-object spectra of LyC candidates to AB<
∼28.

Concentrate on the most dusty (far-IR selected) AV
>
∼1 objects at z>∼2.3!





JWST Medium-band Survey of HUDF: strong line-emitting candidates at
1.5<∼z<∼11 (Williams et al. 2023; astro-ph/2301.09780).



Main CCD LyC limitation: Charge-Transfer Efficiency (CTE) degradation.
“Higher-CTE” & “Lower-CTE” sub-samples for WFC3/UV filters:

• Green regions are closest to parallel read-out amplifier. Red regions are
furthest from amplifiers, and may suffer more from CTE-degradation.

• Filled circles: objects w/ marginal LyC signal fairly uniformly distributed.
Average LyC diff: ∆(Lower-CTE–Higher-CTE)<∼0.3 mag.

=⇒ Less than four months after WFC3’s launch, CTE-induced systematics
are not yet larger than the random errors in the LyC signal.



• Next generation >
∼6-meter UV-optical space telescope (HWO) essential

for AB<
∼30 detections and AB∼32 mag for LyC stacks (N>

∼104).

• Need: L2 servicing, periodic CCD replacement, or wide-field UV IFU.
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