

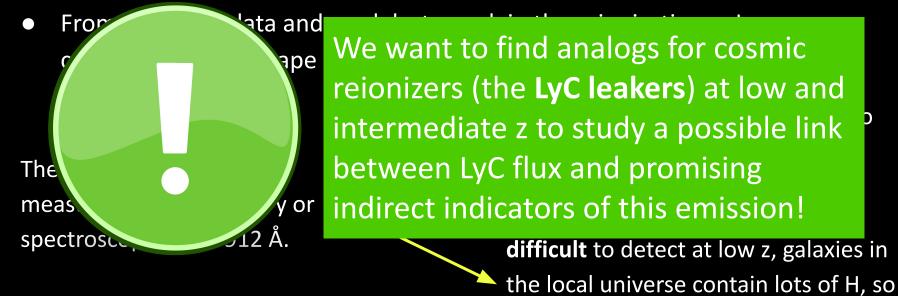
Reionization's labyrinth:

how to escape following the indirect indicators' thread

Sara Mascia (sara.mascia@inaf.it)

Supervisor: L. Pentericci *Collaborators*: A. Calabrò, L. Napolitano, M. Castellano, P. Santini et al.

The archetype of a Lyman Continuum Leaker

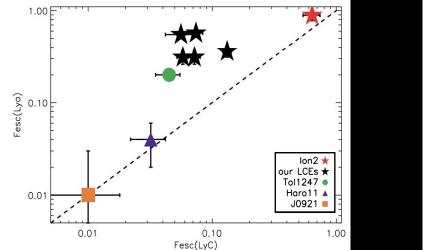

- Faint, low mass galaxies are thought to be responsible for cosmic reionization.
- From empirical data and models, to explain the reionization, a Lyman continuum (LyC) escape fraction of ~10-20% is needed

The LyC flux can be measured via photometry or \sim spectroscopy at $\lambda < 912$ Å. impossible to detect at z > 4 due to
IGM opacity, that increases with redshift

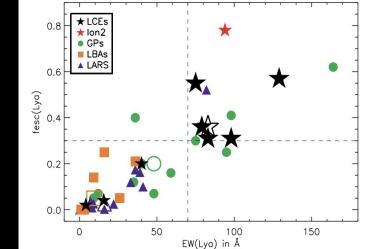
difficult to detect at low z, galaxies inthe local universe contain lots of H, soLyC flux is absorbed locally

The archetype of a Lyman Continuum Leaker

• Faint, low mass galaxies are thought to be responsible for cosmic reionization.



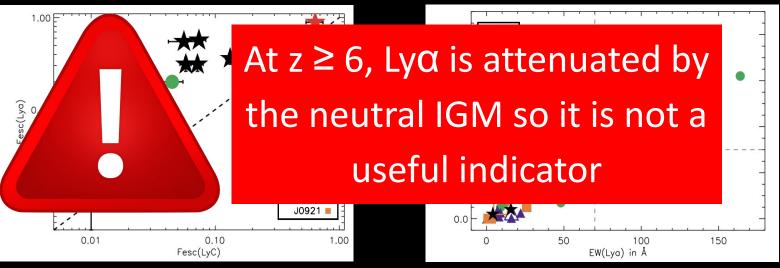
LyC flux is absorbed locally


Indirect indicators of LyC escape - Lyα

Lyα and high ionization emission lines seem to be related to the escape of LyC photons at all redshifts.

At low-to intermediate redshift Ly*a* is the best indirect indicator of LyC emission (e.g.

Verhamme+17, Marchi+18)

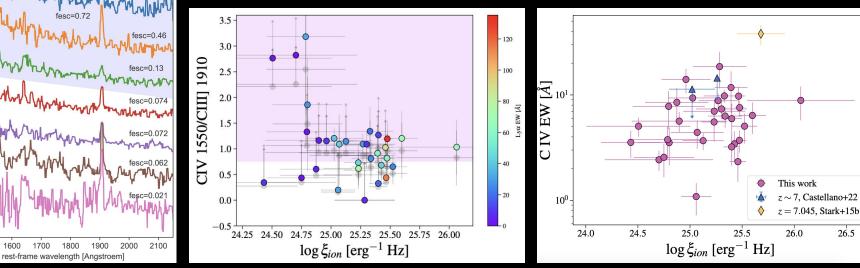

Verhamme+17

Indirect indicators of LyC escape - Lyα

Lyα and high ionization emission lines seem to be related to the escape of LyC photons at all redshifts.

At low-to intermediate redshift Ly**a** is the best indirect indicator of LyC emission (e.g.

Verhamme+17, Marchi+18)



Verhamme+17

Indirect indicators of LyC escape - rest-frame UV lines

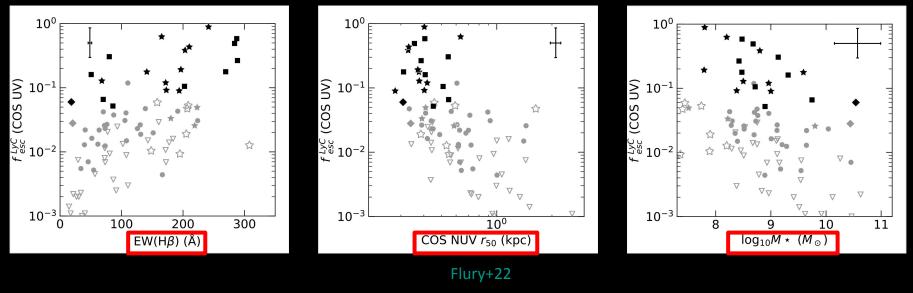
Lyα and high ionization emission lines seem to be related to the escape of LyC photons at all redshifts.

Nebular CIV is detected in most low-z confirmed LyC leakers. We have analysed the rare nebular CIV emitters @z=3 and they share many properties of the high leakers (Saxena+22, Mascia+23a). **However, these lines are faint.**

S. Mascia, Escape of Lyman radiation from galactic labyrinths, 18-21 April 2023, Crete

J1154 J1152

Schaerer+22


1400

1500

Mascia+23a

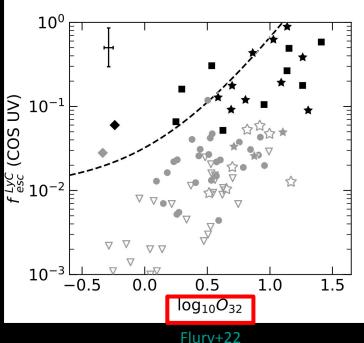
Indirect indicators of LyC escape

The most systematic and complete study of low redshift LyC leaking galaxies and indirect diagnostics comes from the **Low-Redshift Lyman Continuum Survey** (PI A. Jaskot)

See S. Flury's talk tomorrow!

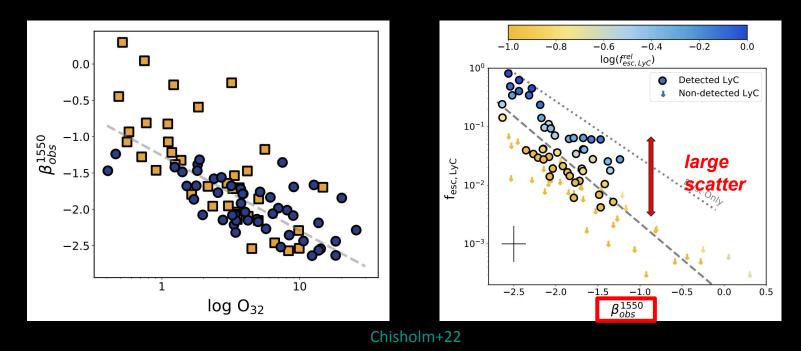
define a LyC leaker!

S. Mascia, Escape of Lyman radiation from galactic labyrinths, 18-21 April 2023, Crete


Indirect indicators of LyC escape - rest-frame optical lines

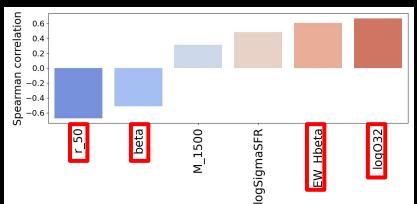
LyC leakers should have a high [O III] $\lambda\lambda$ 4959,5007/[O II] λ 3727.

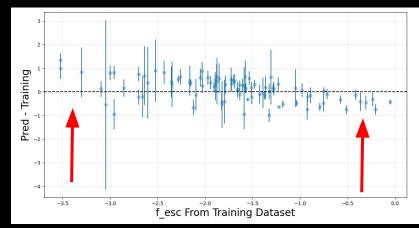
[OIII]/[OII] ratio changes with:


- spectral shape of ionizing source \rightarrow no AGN 1. contamination
- gas temperature 2.
- metallicity 3.
- ionization parameter 4.
- gas density 5.

Necessary but not sufficient condition to

Indirect indicators of LyC escape - $UV-\beta$ slopes


= the slope between rest-frame 1300 Å and 1800 Å.
 It is easily measurable in high z galaxies.

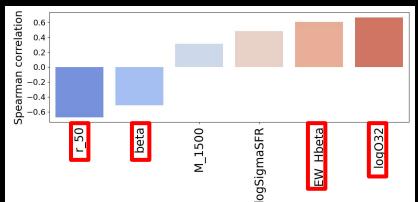


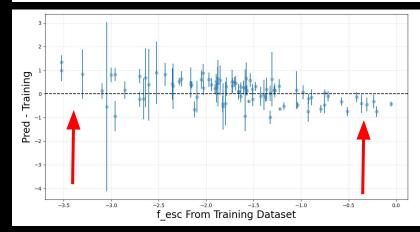
Predicting f_{esc} of EoR galaxies

From the 18 spectroscopic and physical properties of the 88 local LCEs analysed by Flury+22 (+ Izotov+16a,b, +18a,b, +21; Wang+19), we calibrate an empirical relation with the f_{esc} values using the most correlated ones.

 $log_{10}(f_{esc}) = A + Blog_{10}(O32) + Cr_{e} + D\beta$ A = -1.92 [-2.51, -1.71] B = 0.48 [0.38, 0.69] C = -0.96 [-1.20, -0.62] D = -0.41 [-0.58, -0.31]

$\label{eq:predicting} \mathbf{f}_{\mathbf{esc}} \ \mathbf{of} \ \mathbf{EoR} \ \mathbf{galaxies}$


From the 18 spectroscopic and physical properties of the 88 local LCEs analysed by Flury+22 (+ Izotov+16a,b, +18a,b, +21; Wang+19), we calibrate an empirical relation with the f_{esc} values using the most correlated ones.

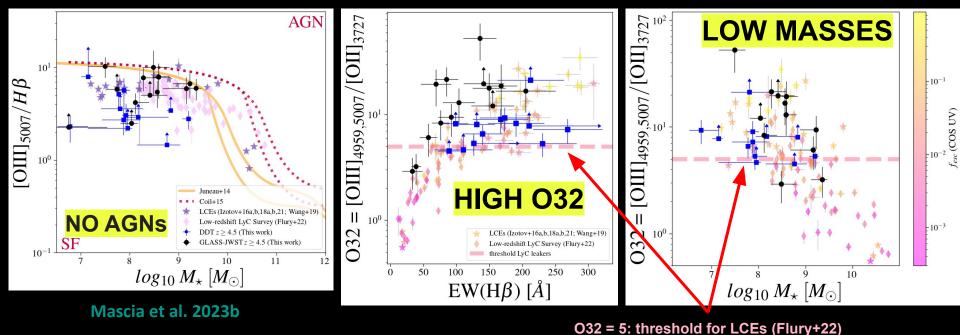

$$log_{10}(f_{esc}) = A + Blog_{10}(O32) + Cr_{e} + D\beta$$

$$A = -1.92 [-2.51, -1.71] \qquad B = 0.48 [0.38, 0.69]$$

$$C = -0.96 [-1.20, -0.62] \qquad D = -0.41 [-0.58, -0.31]$$

$$log_{10}(f_{esc}) = A + BEW(H\beta) + Cr_e + D\beta$$

A = -1.92 [-2.46, -1.75] B = 0.0026 [0.0019, 0.0039
C = -0.94 [-1.14, -0.67] D = -0.42 [-0.59, -0.33]

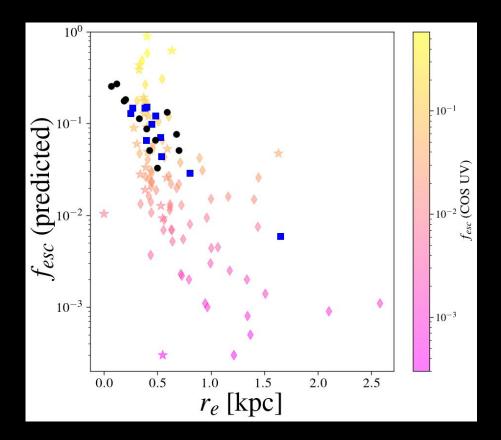

We can measure many of these indirect indicators in high redshift galaxies and thus predict their f_{esc} values with JWST

Indirect LyC diagnostics at the EoR

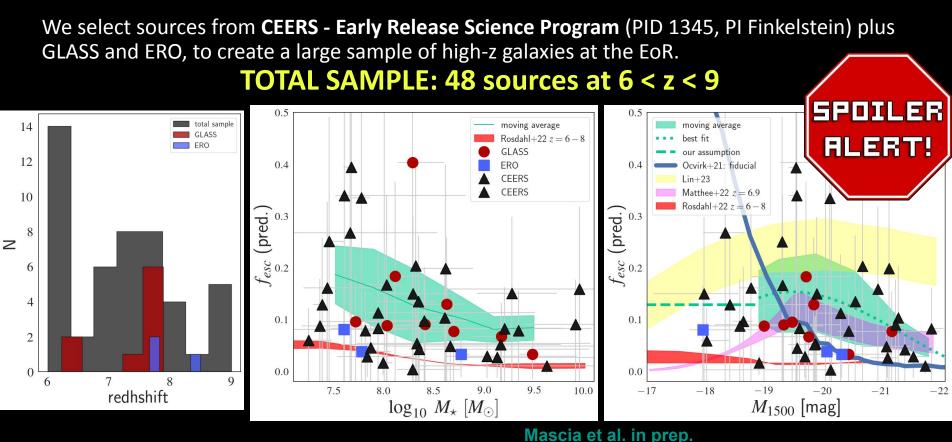
Indirect LyC diagnostics at the end of reionization

29 GALAXIES AT 4.5 < z < 8

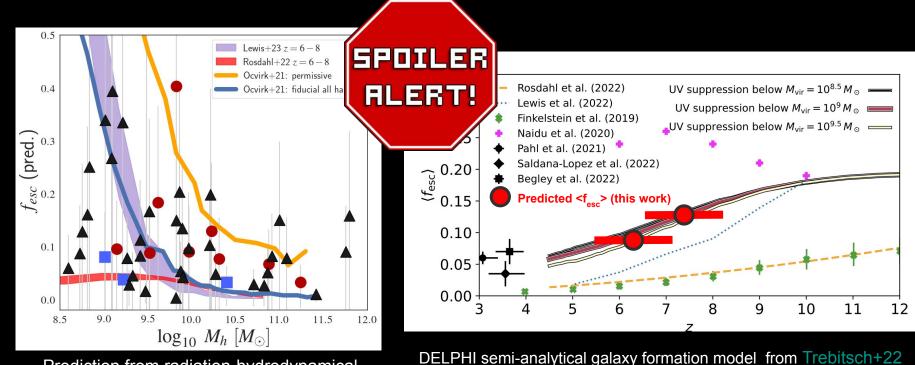
from the **GLASS-JWST Early Release Science Program** (PI Treu) and the **JWST DDT program** (PI. W. Chen), both on the A2744 cluster field.



f_{esc} of EoR galaxies


We apply the relation to our high-z galaxies.

Most of our galaxies have predicted f_{esc} > 0.05, i.e. they would be considered leakers.


The average f_{esc} is 0.12 with the bluest, and most compact sources having f_{esc} as large as 0.2–0.4.

Which galaxies contributed more @EoR?

Which galaxies contributed more @EoR?

Prediction from radiation-hydrodynamical simulations by Ocvirk+21, Lewis+23, Rosdahl+22

Mascia et al. in prep.

Take-home message

- We derived accurate relations to infer the escape fraction of EoR galaxies from 1) measurable spectroscopic/physical properties, calibrating on a large sample of low-z leakers
- 2) We characterize **29** gravitationally lensed $4.5 \le z \le 8$ galaxies in the Abell 2744 cluster which are on average, low mass galaxies (average stellar mass of ~10^{8.1} M_o), compact sources (r \sim 0.2-0.5 kpc) and show strong optical emission lines ([OIII], H β , H α)

 \rightarrow Assuming that the mechanism that drive the escape of LyC photons are the same as at low redshift, we use our calibrated relation to predict an escape fraction of ~ 0.1.

We are now studying a much larger sample of EoR galaxies with the aim of evaluating 3) Thank you! the dependance of f_{esc} on $M_{\mu\nu}$ and mass